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PREFACE

Demands for improved performance of tactical guided weapons expected to operate in complex
battle environments lead to the investigation and application of guidance and control systems based on
modern control theory.

Modern control theory deals with the analysis and synthesis of systems and devices for the control
of complex multi-input multi-output systems. Modern control theory, despite its apparent mathematical
complexity, provides a unified approach to solving a wide variety of guidance and control analysis,
design, and optimization problems. The application of modern control theory to the development of
tactical guided weapons is a high interest, high potential technology.

Modern control theory is based on abstract mathematical concepts and its development uses a
system of notation and terminology largely incomprehensible to engineers and managers not skilled in
the art. As a body of knowledge, modern control theory encompasses all of classical control system
design, augmented with computational techniques largely developed over the past two decades. Although
these techniques are highly mathematical in nature, a knowledge of their general approaches and some
familiarity with their results is necessary to appreciate and comprehend their intended applications. This
review attempts to explain the concepts, advantages, and limitations of modern control theory in layman’s
language to the extent possible.

This GACIAC State-of-the-Art Review (SOAR) focuses on the application of selected concepts
and mathematical tools drawn from modern control theory to the design and development of tactical
weapon guidance and control systems. These tools include state-variable modeling and analysis, system
identification, state and parameter estimation, optimization and optimal control, stochastic control,
differential games, and adaptive control. This review addresses the basic concepts of these technologies,
their present application, and their future potential. Readers are encouraged to pursue the topics
presented in more detail, and to seek new applications for modern control theory in future tactical weapon
systems.

Except for a few reports and conferences, GACIAC has mostly concentrated on the guidance
partner of guidance and control. This review addresses the mostly silent partner. Dr. Donald S.
Szarkowicz wrote most of the rough draft that was used as a basis of this report; he left IIT Research
Institute in 1992 to change careers. His rough notes and drafts on discs were edited, restructured and
amended to produce this report. Mrs. Susan Garrison, Ms. Karen Kozola, and Mrs. Toni Cavalieri
processed and assembled the text and figures. I performed the editing and am responsible for any errors
and omissions.

Robert J. Heaston
GACIAC Director
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CHAPTER 1
INTRODUCTION

1.1 Assessment of Need

Demands for improved performance of tactical guided weapons expected to operate in
complex air and surface battle environments necessitated the investigation and application of guidance
and control systems based on modern control theory. This GACIAC State-Of-The-Art Review
(SOAR) focuses on the application of selected tools and concepts drawn from modern control theory

to the design and development of tactical weapon guidance and control systems.

The application of modern control theory to tactical guided weapons is a high interest, high
potential technology. The basic concepts of this technology, their present application, and future
potential are addressed in this SOAR. This review is intended to be of use to administrators,
managers, and bench engineers, and will assist them in making informed decisions regarding future
tactical weapon systems. These future systems will undoubtedly make increasing use of modern

control theory technology.

Modern control theory deals with the analysis and synthesis of systems and devices for the
control of complex multi-input and multi-output (MIMO) systems. As a body of knowledge, modern
control theory encompasses all of classical control system design technology, augmented with a wide

range of computational techniques largely developed over the past two decades.

Modern control theory is based on abstract mathematical concepts and uses a system of
notation and terminology that is incomprehensible to anyone untrained in this technology. In this
SOAR, we have attempted to explain the concepts, advantages, and limitations of modern control
theory as applied to the guidance and control of tactical guided weapons in layman’s language to the

extent possible. Nevertheless, much of the mathematics has been retained to broaden the use of this

report.

The essence of modern control theory is the designation of the state constants and the state
variables which characterize a system. The most difficult problem is determination of the state
variables. The state variables of a dynamic system are that fewest set of numbers which define the
values of all variables of interest concerning a particular dynamic system or a mathematical model at

a particular point in time or space. For example, a guided missile can be simply modeled by an
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idealized particle having a fixed mass. The motion of that particle moving through space is
completely determined if the position and velocity of the particle are known at each point in time.
Other variables of interest, such as the force acting on the particle or the particle’s kinetic and
potential energy, can be determined if we know the particle’s instantaneous position and velocity and
apply certain basic laws of physics. Position and velocity are thus a set of two state variables for this

simple mathematical model of a guided missile.

For a dynamic system, the state variables need not be physically measurable or observable
quantities. In some cases, state variables are purely mathematical entities. From a practical
viewpoint, it is convenient to choose as state variables a set of variables which can be physically
measured. The reason for this choice is that the modern control theory approach to control system

design relies on the feedback of measured state variables to form a closed-loop control system.

Given the present availability of powerful digital computers based on miniaturized high-speed
microprocessors, high-capacity random access memories, and other integrated circuits, it is now
possible to include additional computational capabilities on-board newly designed tactical guided
weapons, and to do so in a cost-effective manner. This capability permits the introduction and
implementation of guidance and control system designs based on modern control theory as opposed to

systems based on conventional classical control system design procedures.

1.2 Report Structure and Content

Despite the apparent complexity of the subject matter, modern control theory provides a
unified mathematical approach to solving a wide variety of system analysis, design, and optimization
problems. This GACIAC SOAR focuses on the application of selected tools drawn from modern

control theory to the design and development of tactical weapon guidance and control systems.

Before moving on to details, a preview of the tools of control theory selected for inclusion in

this report is in order. A summary description of the tools will also provide an outline of the

chapters contained in this report.

Classical Control Theory. Classical control system design traditionally deals with single-
input, single-output linear systems. Performance specifications for these systems have classically been
specified in either the time or frequency domain by measures such as response or settling time,
percent overshoot, bandwidth, or gain and phase margins. In a classical control system any unwanted

interactions between system variables are either ignored or assumed to be minimal.
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Chapter 2 presents some of the methods of classical control theory. The primary approach is
that of feedback systems modeled with Laplace transforms and z-transforms for continuous-time and
discrete-time systems, respectively. Both open-loop and closed-loop systems are discussed. The
classical methods of stability based upon Routh’s stability criterion, the root-locus method, Bode

plots, and Nyquist’s stability criterion and polar plots are introduced.

Modern_Control Theory. In contrast to classical control theory, modern control theory
allows the designer to deal with dynamic systems having simultaneous multiple inputs and outputs,
thus retaining any natural interactions occurring within the total system. Additionally, modern control
theory relies on the now considerable body of knowledge regarding mathematical optimization

techniques as a means for designing the best possible control system.

In a design approach based on modern control theory, the desired performance of a guided
weapon is specified in the language of mathematics, for example, to minimize intercept time, miss
distance, or energy expended. On board a guided missile a microprocessor-based digital computer
may now contain a mathematical description of the system aerodynamics and engagement kinematics
in state variable form. These dynamic equations can be efficiently and rapidly processed to yield an
optimal missile trajectory and a corresponding set of control surface displacements. Modern control
theory can, in principle, provide the autopilot commands required to intercept the target in minimum
time, or at the expense of a minimum amount of fuel, or while optimizing any other suitable function

designated as the performance measure by the system’s designer.

Chapter 3 provides an introduction to modern control theory and the other topics which the
rest of this review addresses. The main focus in this chapter is on system modeling and the

identification of state variables.

Dynamic Systems. The concept of a dynamic system is central to the application of modern
control theory. A dynamic system is a physical system or mathematical model whose behavior
evolves over time. A guided missile in flight is a dynamic system. The missile’s position and

velocity evolve over time in response to the action of its guidance, control, and propulsion systems.

Dynamic systems are discussed in Chapter 4. It is usually a routine matter to identify the
inputs to a dynamic system of interest and the important outputs. For example, one input to a guided

missile model is the applied thrust. The resultant outputs are the missile position and velocity.

System Identification. System identification involves the process of building a mathematical

model of a dynamic system based on measurements of the system’s inputs and outputs. System
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identification requires the determination of the structure of the mathematical model and, for a

dynamic system in which the outcome does not depend on any chance factors, the evaluation of the

parameters of that model.

Most design approaches in both modern and classical control theory assume that an explicit
mathematical model is available for the dynamic system to be controlled. For the idealized particle
model, Newton’s law can be used to derive a mathematical model for the particle’s acceleration as a
function of the applied force and the particle’s mass. The input to the resultant system is the applied

force, and the eventual output is the particle’s position. The structure of the mathematical model of

this dynamic is thus determined.

In other methods both the structure of the mathematical model and the values of its parameters
may be unknown. It is then necessary to identify both the structure of the mathematical model and
the values of the model’s parameters before the design of a control system can be accomplished. If,
for example, the particle’s mass is unknown, this unknown parameter can be experimentally identified
by processing the applied input and the observed output. The mathematical parameters of a dynamic

system are presented in Chapter 5.

Kalman Filter. The values of the state variables of a dynamic system must be available in
order for the methods of modern control theory to compute a feedback control signal. Those state
variables which can be directly measured may be used immediately in this computation. Those state
variables which are not directly measurable must be estimated prior to their use in the computation.
For certain classes of dynamic systems the estimation of the system’s state variables can be done by

means of a Kalman filter. Chapter 6 describes the structure of this important estimator.

Estimation is the assignment of a value to a variable or a coefficient in a mathematical
relationship. Estimation problems differ from system identification problems. In an estimation
problem the structure of the dynamic system’s mathematical model is known and taken as a given. In
modern control theory, estimation refers to the process of determining a specific parameter value, the
values of the dynamic system’s state variables, or the nature of a specific signal based on noise-

corrupted measurements of the system’s outputs.

As an example, suppose that a radar is to be used to measure the position of a guided missile
traveling through space. The radar provides a measured value of the missile’s range at a specific
azimuth and elevation. The angular coordinates are available from the antenna position. Since the

missile may be anywhere within the radar’s effective beamwidth, its precise position is not accurately
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measurable by the radar, and must be estimated. This position estimate can be improved by

statistically processing repeated measurements.

Adaptive Control. - Adaptive control of a dynamic system, covered in Chapter 7, involves
the sensing of one or more system variables and the use of that sensed data to vary feedback control
systems in order to meet performance criteria. There are several related and complementary
techniques which comprise the technology of adaptive control including gain scheduling, model
reference adaptive control, self-tuning regulators, and designs based on optimal stochastic control

theory.

The basic idea of gain scheduling is to compensate for system parameter variations by
changing the parameters as a function of some auxiliary variable. This technique is commonly used
to vary missile autopilot gains as a function of altitude, mach number, dynamic pressure, or some

other auxiliary variable which is easily measured.

In a model reference adaptive control system, the performance specifications are given by a
reference model, a mathematical description of the ideal behavior of the dynamic system. The model
reference control system consists of two separate loops, an inner classical feedback loop consisting of
the dynamic system being controlled and a controller, and an outer loop which alters the controller

structure in response to changes in the system parameters.

The self-tuning regulator also consists of two control loops. The inner control loop consists of
the dynamic system and a classical controller. The outer loop consists of a system identifier and a
design calculation which yields the necessary controller structure. The self-tuning regulator directly

automates the process of dynamic system modeling and control system design.

Adaptive control systems can also be developed based on stochastic control theory. The
system and its environment are modeled stochastically. The performance measure minimizes the
expected value of a loss function. The controller consists of a state variable estimator and a feedback
signal generator. The feedback signal generator is a nonlinear device which computes the control

signals based on the estimates and the input command signal.

Mathematical Optimization. Decision problems involving solutions to such problems as the
best numerical values to be assigned to the parameters of a control system design, the best trajectory
to be followed by a missile en route to its target, or the best input signal to apply to a dynamic
system in order to drive the state variables to some desired values are all problems of mathematical

optimization. Mathematical optimization plays a key role as an important tool of modern control
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theory. Mathematical optimization problems can be classified in many ways, some of which will be

detailed later. For the moment it will be helpful to briefly mention two specific classes: static and

dynamic optimization problems.

Static mathematical optimization problems involve finding the maximum or minimum value of
a mathematical function of a set of variables. Each variable represents one component of a decision
or potential solution to the problem. The formulation and solution of a static optimization problem do
not depend explicitly on the passage of time. The variables are usually restricted by a set of

constraints which limit each variable’s range of values. The solution to the optimization problem

requires the values of all of the variables to be selected or specified by the decision-maker. One of

the principle tools for solving static optimization problems is a procedure, or algorithm, called linear
programming.

While static optimization problems are generally concerned with finding a solution to a
decision problem which does not involve the passage of time, dynamic optimization problems are
concerned with mathematical optimization problems in which time is a factor. Dynamic optimization
involves finding the solution to a mathematical problem in which the answer is a function of time
rather than a set of numerical values as in a static optimization problem. The best function yields the
minimum or maximum of a performance measure which is usually the value of an integral involving |
the initially unknown function. A set of constraints may also be operative. These constraints serve to i

limit or restrict the nature of the optimal solution.

The theoretical basis of dynamic optimization is a branch of applied mathematics called the
calculus of variations. Many guidance and control design problems, including the development of
minimum-time and minimum-energy trajectories, can be formulated as dynamic optimization
problems. A principle mathematical tool for the analysis and solution of dynamic optimization

problems is the algorithm known as dynamic programming. Mathematics optimization is treated in

Chapter 8.

Optimal Control. The processes of mathematical modeling, state variable analysis, and
system identification yield a model of a dynamic system in the form of a set of state-transition
equations. These equations represent the manner in which the state variables and system output
evolve over time as functions of the applied input signals. For a dynamic system which operates on a
continuous-time basis, these state-transition equations will be a set of first-order differential equations,
and the input and output of the dynamic system will be defined as functions of time. For a dynamic

system which operates on a discrete-time basis, these state-transition equations will be a set of first-
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order difference equations, and the input and output of the dynamic system will be defined as

sequences of numerical values.

To obtain control over any dynamic system it is necessary to introduce and apply a control
input into the system and its mathematical model. Optimal control, the subject of Chapter 9, involves
the selection of a particular control input for a dynamic system. The selected control function or
sequence normally optimizes a performance measure which is a function of the state variables, the
control input, the final system state, and the time required to reach that state. The particular
performance measure to use is selected by the control system designer to reflect the overall design

goals and desired system performance.

Singular Perturbation Methods. Some dynamic systems are characterized by states that
may be slow or fast. It is necessary to separate a singularly perturbed dynamic system into two
unique subsystems that develop based upon separate time scales. Chapter 10 analyzes such systems

and describes an example for achieving optimal control.

Stochastic Control. Stochastic control theory involves problems of signal filtering, system

identification, and optimal control of dynamic systems represented by noise driven differential or
difference equations. The applied control action for such a system must be a function of the available
information. This information often takes the form of a set of noise corrupted observations of the
system state variables. Stochastic control theory as a whole is a broad subject area which also
includes certain aspects of operations research including dynamic resource allocation, repair and
replacement problems, and optimization problems involving finite Markov chain structures, all of

which are introduced in Chapter 11.

The Markov chain structure is a basic device used to formulate a wide class of stochastic
optimal control problems. A Markov chain is specified by a set of discrete states, each represented
by the value of one or more state variables. Over time the dynamic system state changes in a random
manner according to a set of state-transition probabilities. These probabilities are controlled by one
or more control inputs. The output of the system is a function of the present state and control input.
This mechanism is very similar to the state-transition mechanism commonly associated with sequential
logic circuits. The objective in a stochastic control problem is to determine a control policy which
minimizes or maximizes a probabilistic performance measure. The control policy is defined as a
function of the observed or measured state variables. The performance measure is often the expected

value of a function of the present state and control inputs.
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Stochastic optimal control also concerns the determination of a control policy which optimizes
the performance of a continuous or discrete-time dynamic system whose operation is affected by
random disturbances, noise, or chance outcomes. Some knowledge of the statistical properties of
these disturbances is presumed. The control policy may be described by an open-loop function of
time alone, as a closed-loop function of the state variables, or as open- or closed-loop sequences of
discrete-time control inputs. The performance measure for an optimal stochastic control problem is

often the minimization or maximization of an expected value.

Differential Game Theory. The theory of optimal control applies to dynamic optimization
problems in which there is one source of control inputs determined by the control system designer.
The theory of differential games, Chapter 12, applies to optimal control problems in which there are
several sources of control inputs, all of which interact and affect the dynamic system’s state. In the

language of game theory these various sources are called the players, and the outcome of the game is

called the payoff.

Mathematical games of pursuit and evasion are the prototype for a large class of problems
which can be investigated by means of differential game theory. In a typical problem one seeks to
determine how long one player, the evader, will survive before being caught by the second player,
the pursuer. In some cases the evader may escape without capture by the pursuer. The payoff in this

problem might be a measure of miss distance.

There are many applications of this prototype model including aerial combat, missile versus
target maneuvers, maritime surveillance, strategic balance, economic theory, and social behavior. A
destroyer stalking an enemy submarine serves as a practical example for a differential game. The
destroyer strives to be as near to the submarine as possible at the time depth charges are dropped.
The destroyer bases its maneuvers on information it has obtained regarding the present and predicted
position of the submarine. The submarine strives to maximize the distance between itself and the

destroyer, and may introduce false or misleading information into the game in its efforts to avoid

destruction.

Robustness and Sensitivity. A major objective of the design of modern control systems is

to achieve robustness. Robustness is closely related to the system sensitivity. This relationship is
described in Chapter 13.
For successful operation of the closed-loop control system it is necessary that tracking occur

even if the nature or structure of the dynamic system should change slightly over the time of control.

The process of maintaining the system output close to the reference input, in particular when the input
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equals zero, is called regulation. A control system which maintains good regulation despite the
occurrence of disturbance inputs or measurement errors is said to have good disturbance rejection. A
control system which maintains good regulation despite the occurrence of changes in the dynamic
system’s parameters is said to have low sensitivity to these parameters. A control system having both

good disturbance rejection and low sensitivity is said to be a robust control system.

Precision Guided Munitions. Modern precision guided munitions (PGMs) require complex
guidance and control systems. Various types of PGMs are discussed in Chapter 14. Although
guidance and control are often used interchangeably, there is a fundamental distinction between the
roles of a tactical weapon’s guidance and its control system. The control system is responsible for
automatically moving the weapons’s fins, control surfaces, or thrust mechanisms thus causing
aerodynamic forces and moments to be exerted on the missile. These forces and moments ultimately
change the orientation and direction of the weapon’s motion in space. The control problem involves
the design of an autopilot, or servomechanism, which will cause the weapon to perform those

maneuvers required to reach its target. These maneuvers are determined by the guidance system.

The guidance system usually contains sensing, computing, directing, stabilizing, and additional
servo-control components. The guidance system processes measured or estimated data produced by
the sensors concerning the position of the target relative to the weapon. The guidance system
recommends changes in the flight path required for the weapon to reach its target. The guidance
problem involves the design of this process, commonly called a guidance law, and the specification of

the measured or estimated data necessary to compute a revised trajectory.

Applications of Control Theory. Chapter 15, brings together most of the concepts
discussed in this review. Chapter 15 presents several applications of modern control theory to tactical
weapon guidance and control. These examples were selected from the open literature to indicate the
wide applicability of modern control theory and to display the array of design tools and approaches
presently available. This report is not intended to be a handbook of design formulas for modern
control, nor a cookbook of recipes for optimum solutions to tactical weapon system design problems.
Rather, the reader is encouraged to pursue the topics presented in more detail, and to seek out

applications for this material in those systems with which they may be involved.

Gun Fire Control. The use of gun systems to defeat stationary and moving targets from
either stationary or moving platforms also requires applications of modern control theory. Gun fire

control systems have benefited from many of the same technologies that have advanced missile and

GACIAC SOAR-95-01
Page 1-9




projectile terminal homing. A discussion of these advancements for gun systems is covered in

Chapter 16.

Assessment. The final chapter, Chapter 17, summarizes the state of the art of various
topics of modern control theory. Some suggestions for the future direction of these topics are
presented. Modern control theory is an area that will greatly advance with new computer software,

modeling, and simulation capabilities.
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CHAPTER 2
CLASSICAL CONTROL THEORY

2.1 Introduction

This chapter is intended to provide the reader with a brief overview of some traditional
methods used for classical control system design. These methods and their applications are outlined

for comparison with modern control theory methods presented in later chapters.

Classical control theory deals primarily with single-input, single-output physical systems
described by linear, constant-coefficient, time-invariant differential, or difference equations. Few
physical systems, including tactical guided weapons, operate in a truly linear manner, and many are
time-varying due to changes in mass or structure. However, approximations of linearity and
assumptions of time-invariance allow many dynamic systems to be analyzed for their performance

about nominal operating points, and for relatively small changes in their parameters and signal levels.

The traditional use of transform methods and frequency domain techniques considerably
simplifies the analysis of linear, constant-coefficient time-invariant dynamic systems. Laplace
transforms are the major mathematical tool for the analysis of these systems operating in continuous

time, and Z-transforms are the equivalent tool for the analysis of discrete-time dynamic systems.

Using a transform method, the rather complicated differential or difference equation that
defines a single-input, single-output dynamic system is literally transformed from the continuous-time
or discrete-time domain to the relatively simpler transform domain. In the transform domain the
dynamic system is modeled by a linear algebraic equation which can be manipulated using standard
algebraic methods. Since the relationship between input and output is most often of interest, the
transfer function, defined as the ratio of the transform of the output signal to that of the input signal,

is an important quantity in classical control system design.
2.2 System Representations

The most prevalent system structure investigated using classical control theory is the
feedback control system. A single-input, single-output continuous-time feedback control system is
shown in Figure 2-1. This dynamic system is considered to be totally analog in nature. Notation

commonly used in classical control theory labels the analog input or reference signal as r(t) and its
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Figure 2-1. Single-input, single-output continuous-time feedback control system.

Laplace transform as R(s). The analog feedback signal is labeled f(t) and its transform is labeled
F(s), the output or controlled analog signal labeled as c(t) and its transform as C(s), and the actuating
or error analog signal as e(t) and its transform as E(s). To emphasize the differences in labels, x(t)
refers to the mathematical function representing the value of a signal x at a time t, while X(s)
represents the Laplace transform of that same signal. Tables of Laplace transforms and their

corresponding time functions are readily available?!.

Figure 2-2 shows a feedback controller implemented for a similarly structured discrete-time
dynamic system which uses a digital computer to implement the feedback, error computation, and
actuation functions. It is implicitly assumed that the dynamic system operates at a constant sampling
rate, and that the signal samples, provided by a set of analog-to-digital and digital-to-analog
converters, are themselves separated by a sample time of T seconds. Notation commonly used in
classical control theory labels the discrete-time input or reference signal as r(k) and its Z-transform as

R(z), the discrete-time feedback signal as f(k) and its Z-transform as F(z), the output or controlled

Riz) ER) C2
' @ > K Giz) >

k) e(k) olk)

F(z)
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Figure 2-2. Single-input, single-output discrete-time control system.
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discrete-time signal as c(k) and its Z-transform as C(z), and the actuating or error discrete-time signal
as e(k) and its Z-transform as E(z). To again emphasize the difference, x(k) refers to the
mathematical sequence representing the value of a signal x at a sample time indexed by k, while X(z)
represents the Z-transform of that same signal. Tables of Z-transforms and their corresponding

sequences are readily available?!,
2.3  Analysis of Continuous-Time Control Systems

In the continuous-time closed-loop control system illustrated in Figure 2-1, the forward
transfer function is KG(s)—the ratio between the transforms of the output C(s) and the error signal
E(s). The factor K is an adjustable gain to be selected by the designer. The factor G(s) often consists
of the product of two other factors, G(s) = G.(s)G,(s), where G,(s) is fixed and models the original
dynamic system, plant, or process to be controlled and G.(s) is a compensation network or controller
to be specified by the designer. The addition of G.(s) is intended to improve overall system

performance.

The feedback transfer function is H(s). This transfer function represents the dynamics of the
instrumentation used to form the feedback signal and any feedback signal conditioning or
compensation networks. The form of H(s) is partially under the designer’s control. If the feedback
dynamics are sufficiently fast compared to those of the plant, H(s) is normally assumed to be a
constant, and that constant is often assumed to equal unity, indicating that a direct measurement of the

system output is available to form the error signal.

The open-loop transfer function is KG(s)H(s). This product of factors models the reference
signal transmission through the combined plant and feedback network when the feedback signal is

disconnected from the summing junction.

In the closed-loop control system illustrated in Figure 2-1, the error signal e(t) is determined
by subtracting the feedback signal f(t) from the reference signal r(t). When H(s) is assigned the value
of 1.0, the difference e(t) is a direct measure of the difference between the reference input r(t) and the
output c(t) at the time t. Generally, the designer of a continuous-time closed-loop control system is
interested in the relationships between c(t) and r(t) or e(t) and r(t), or their transform equivalents
C(s), E(s) and R(s).

Using Laplace transform methods, it is quite easy to develop algebraic ratios or transfer
functions involving the transforms of those signals of interest. The closed-loop transfer function

between the input, R(s) and the output C(s) is:
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Cs) _ KG(s) .
RS  (1+KG(s)H(s)

The transfer function between the error, R(s) and the output, C(s), is:

Ee) 1
R(S)  (1+KG(9H(s))

The analog system illustrated in Figure 2-1 is a prototype for virtually all classical closed-
loop continuous-time control systems. The Laplace transforms involved in these transfer functions

can themselves be represented by quotients of numerator and denominator polynomials of the complex

variable s:
£.(s)
G(s) = ——
© 2,(s)
h
H(s) = BE_E:_; .

The values of s which are the roots of the denominator polynomial g,(s) are called the poles
of G(s), and the values of s which are the roots of the numerator polynomial g(s) are called the zeros
of G(s). This same notion can be applied to the various transfer functions. The roots of the
denominator polynomial of the open-loop transfer function KG(s)H(s) are called the open-loop poles.
The roots of the numerator polynomial of the open-loop transfer function KG(s)H(s) are called the

open-loop zeros.

Similarly, the roots of the denominator polynomial of the closed-loop transfer function
C(s)/R(s) are called the closed-loop poles. The roots of the numerator polynomial of the closed-loop
transfer function C(s)/R(s) are called the closed-loop zeros. For practical system design, numerical
methods are required to factor these polynomials and determine their roots. The closed-loop system
poles are especially important as they determine the system time constants, the system response to

arbitrary inputs, and the relative system stability.
2.4 Analysis of Discrete-Time Control Systems

In the discrete-time closed-loop control system illustrated in Figure 2-2, the forward transfer
function is KG(z), the ratio between the Z-transform of the output C(z) and that of the error signal
E(z). The factor K is an adjustable gain to be selected by the designer. The factor G(z) is often the
product of two other factors, G(z) = G.(z)G,(z), where G,(z) models the dynamic system, plant, or
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controlled process and G,(z) is a compensation network or controller to be specified by the designer.

The addition of Ge(z) is again intended to achieve an improvement in overall system performance.

The feedback transfer function is H(z), which represents the dynamics of the instrumentation
used to form the feedback signal and any feedback signal conditioning or compensation networks.
The form of H(z) is partially under the designer’s control. If the feedback dynamics are sufficiently
fast compared to those of the plant, H(z) is assumed to be a constant and the value of that constant is

often taken as unity.

The open-loop transfer function is KG(z)H(z). The product of these three factors models the
transmission of the reference signal through the combined plant and feedback network when the

feedback signal is disconnected from the summing junction.

In the discrete-time closed-loop control system illustrated in Figure 2-2, the error signal e(k)
is determined by subtracting the feedback signal f(k) from the reference signal r(k). When H(z) is
assigned the value of 1.0, the difference e(k) is a direct measure of the difference between the
reference r(k) input and the output c(k) at time step k. Generally, the designer of a discrete-time
control system is interested in the relationships between c(k) and r(k), or e(k) and r(k), or their

transform equivalents C(z), E(z) and R(2).
Using Z-transform methods, it is quite easy to develop algebraic ratios between the

Z-transforms of the signals of interest:

C(z) _ KG(z)

closed-loop transfer function
R@  (1+KG(@H(@) ( d )

E(z) _ 1
R@ (1+KG@H()

The closed-loop discrete-time control system illustrated in Figure 2-2 is a prototype for
virtually all classical discrete-time systems of interest. Generally the various Z-transforms can

themselves be represented by quotients of numerator and denominator polynomials of the complex

variable z:
g.(2)
G(z) = ==
@ =@
b (2
Hz = _2_.
(2 E)
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The values of z which are the roots of the denominator polynomial g,(z) are called the poles
of G(z), and the values of z which are the roots of the numerator polynomial g(z) are called the zeros
of G(z). This notion can be applied to the other transfer functions involved. The roots of the
denominator polynomial of the open-loop transfer function KG(z)H(z) are called the open-loop poles.
The roots of the numerator polynomial of the open-loop transfer function KG(z)H(z) are called the

open-loop zeros.

Similarly, the roots of the denominator polynomial of the closed-loop transfer function
C(2)/R(z) are called the closed-loop poles. The roots of the numerator polynomial of the closed-loop
transfer function C(z)/R(z) are called the closed-loop zeros. For practical system design, numerical
methods are required to factor these polynomials and determine their roots. The closed-loop system
poles are especially important as they determine the time constants of the discretitive system, the

response of the system to arbitrary inputs, and the relative system stability.

Much of the technical work involved in the design of control systems using classical methods
involves the development of mathematical models for and the analysis of single-input, single-output
feedback control systems similar to those illustrated above. Linear constant-coefficient systems
having multiple inputs and outputs can be treated by extending these classical methods to dynamic
systems modeled by transfer function matrices®!. It is also possible to develop models for systems

which are a composite of continuous- and discrete-time signals*2.
2.5 Reasons for Using Feedback as a Means of Obtaining Control

Continuous- and discrete-time control systems similar to those illustrated above are used to

achieve the advantages of feedback control:

¢ the controlled dynamic system can be made to follow or track a specified input
function in an automatic manner

¢ the performance of the closed-loop control system is less sensitive to variations in
plant or process parameters

e the performance of the closed-loop control system is less sensitive to unwanted
disturbances or measurement noise

* it is easier to obtain desired transient and steady-state responses

To obtain the advantages of feedback, the dynamic system must become somewhat more

complicated. Unavoidable costs must be incurred and the stability of the resulting closed-loop system

becomes a major design consideration.
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The improper use of feedback can destabilize an otherwise stable dynamic system, while the
proper use of feedback can stabilize a dynamic system previously shown to be unstable. In a
feedback control system, additional gain or amplification stages may be required to compensate for
signal transmission losses. While this poses no serious problem in most analog electronic or digital
computer-based control systems, achieving high gain may be a serious problem in a mechanical or

non-electronic control system design.

To provide the necessary feedback signals and compensation networks, additional sensors,

signal summing devices, and other high-precision components are required.
2.6 Classical Closed-Loop Control System Performance Measures

A well-designed closed-loop control system should, in a classical sense, possess four desirable

characteristics:
e stability
®  steady-state accuracy
e  satisfactory transient response
e  satisfactory frequency response

These performance characteristics are discussed in more detail in the following sections.

2.6.1 Stability

A dynamic system’s stability is determined by the system’s response to external input signals
or disturbances. An intuitive definition of a stable system is one which will remain at rest until it is

excited by an external source, or one which will return to rest if all external sources are removed.

In terms of a mathematical model, stability means that the response c(t) or ¢(k) must not grow
without bound due to a bounded input signal, an initial condition present in the system, or an
unwanted disturbance. For the linear constant-coefficient time-invariant systems treated by classical
control theory, stability of the closed-loop system mathematically depends only on the roots of the
characteristic equation. The characteristic equation is the denominator polynomial of the closed-loop

transfer function.

To ensure stability of a continuous-time system, the roots of the characteristic equation must
lie in the left-half complex plane, where they have negative real parts. A negative real part
corresponds to an exponentially decaying impulse response component. For a discrete-time system,
the roots of the characteristic equation must lie inside the unit circle in the complex plane. A root

lying inside the unit circle corresponds to a decaying sequence as an impulse response component.
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There are several classical methods for determining the stability of continuous- or discrete-time
systems, including Routh’s criterion, the root-locus method, the use of Bode plots, the use of Polar
plots and Nyquist’s stability criterion, and the use of log-magnitude versus angle plots. The reader is
encouraged to consult Ogata®! and Dorf>*® for details of these methods and examples of their

applications. A brief discussion of these methods is presented below.

Routh’s Stability Criterion. When applied to a dynamic system modeled by a continuous-
time, constant-coefficient linear differential equation, Routh’s stability criterion®* tells a designer
whether or not there are any roots of the characteristic equation which lie in the unstable region of the
complex plane. The actual locations of the roots in the complex plane are neither found nor required
to be known to determine the system’s stability. It is not required to factor the characteristic
polynomial to apply Routh’s stability criterion. This is one of the criterion’s main advantages. This

criterion applies to characteristic polynomials with a finite number of terms.

When Routh’s stability criterion is applied to a continuous-time linear closed-loop control
system, information about the absolute stability of the dynamic system can be obtained directly from
the characteristic equation. If the characteristic equation is available in factored form, stability can

immediately be determined by inspection of the root locations and the use of Routh’s stability

criterion is not required.
The procedure for Routh’s stability criterion is relatively simple:
(1) Write the characteristic polynomial as
D(s) =a,s® +as™ + ... +a_s'+a =0,

where all the coefficients a; are real-valued, and a, is not equal to zero.

(2) If any coefficient a, is negative or zero and at least one coefficient a; is positive, then

there are one or more roots which lie in the right-hand complex plane or on the imaginary axis. Such

a system is unstable.

(3) If all the coefficients a; are positive, then arrange the coefficients of the polynomial in

rows and columns as in the following:
T 8 A 3, 3 ...
s la, a, a a, ..
$*2b, b, b; b, ...

$57%¢, ¢ G Gy .
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The coefficients b, , b,, ..., are evaluated following the pattern

b, = (3, 3, — 3 3y)/a,

b, = (3, 2, — 3 ay)la,,

by = (3, 3 — 3 ay)/a,,

until the remaining coefficients are all zero. This pattern of cross-multiplication, subtraction, and

division is repeated until the table is filled down to the row labeled s°.

Routh’s stability criterion states that the number of roots of the characteristic equation which
lie in the unstable region of the complex plane is equal to the number of sign changes in the first
column of the table. The absolute stability of a continuous-time dynamic system described by a
linear, time-invariant, constant-coefficient differential equation is thus simply determined by the

application of Routh’s stability criterion.

To apply Routh’s stability criterion to a discrete-time system, the bilinear transformation
z = (w+1)/(w—1) is used to map the inside of the unit circle in the complex z-plane into the left half
of the complex w-plane. The use of this algebraic transformation converts the system’s characteristic
equation into a polynomial in w, to which the designer applies Routh’s criterion in exactly the same

manner as for a continuous-time system.

The Root-Locus Method. The stability and transient response of a closed-loop system is
determined by the location of the poles of the closed-loop transfer function. In the classical analysis
of single-input, single-output control systems, it is necessary to determine the location of the poles in
the complex plane. When designing a closed-loop control system, the location of the open-loop poles
and zeros are adjusted by the designer so as to place the resulting closed-loop poles and zeros at

desirable locations in the complex plane.

The closed-loop poles are the roots of the characteristic equation. Finding the locations of

these poles, in general, requires factoring the characteristic polynomial. This is classically a tedious
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task if the degree of the characteristic polynomial is greater than two. Classical algebraic techniques
for factoring polynomials are not well-suited for use in this application because as the designer

changes the gain or any other system parameter, the location of the closed-loop poles changes and the

computations must be repeated.

W. R. Evans developed a simple graphical method for finding the roots of the characteristic
equation, and this method, called the root-locus method>!, is now used in classical control system
design. In the root-locus method, the roots of the characteristic equation are plotted for all possible
values of a single system parameter such as gain. The root locations corresponding to one particular
numerical value of this parameter can then be determined by inspection of this plot, or root-locus.
The parameter of interest is usually the open-loop gain but the influence of any other parameter of

interest can be investigated.

Since the characteristic equation for a continuous-time dynamic system is given by
1 + KG(s)H(s) = 0, the values of s which satisfy the characteristic equation must be those which
make the product KG(s)H(s) equal to —1. Evan’s root-locus method enables a designer to determine
the locations of the closed-loop poles from an analysis of the open-loop transfer function’s poles and
zeros with the gain K as a parameter. The method provides an indication of the way in which the
open-loop transfer function must be modified so that the resulting closed-loop system is stable and

meets the performance specifications.

For a discrete-time dynamic system the characteristic equation is 1 + KG(z)H(z) = 0. The
stability region for a discrete-time system is the inside of the unit circle. Application of the root-locus

method is essentially the same for either continuous- or discrete-time systems.

Bode Plots. A Bode plot is a graphical method which provides stability information for
minimum phase systems—systems which have no open-loop poles or zeros in the unstable region of
the complex plane. A Bode plot is a logarithmic plot of the magnitude and phase angle of the open-
loop transfer function versus frequency. For a continuous-time system, the sinusoidal transfer
function, or frequency response, can be obtained by the substitution s = jw, where w = 2af is the
angular frequency in radians per second and f is the frequency in Hertz. The product KG(jw)H(jw) is \

then plotted in terms of its magnitude and phase angle versus radian frequency w on two separate |
plots.
The classical Bode plot method is well-suited for graphical analysis if the open-loop transfer

function is available in factored form, since straight-line asymptotic approximations can be used for

each factor. The critical point for stability on a Bode plot is that frequency w at which the magnitude
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of the open-loop transfer function equals 1.0, or 0 dB, and the phase angle of the open-loop transfer
function equals —180°.

Bode plot methods can be applied to discrete-time systems by first applying the bilinear
transformation z = (w+1)/(w—1) to map the inside of the unit circle in the complex z-plane into the
left half of the complex w-plane, and then substituting w = jw’. When this process is applied, the
transformed frequency ' is a distorted representation of the true sinusoidal frequency. For this
reason, Bode plot methods, as well as the classical Nyquist and log-magnitude methods described

below, are not often applied in the classical design of discrete-time control systems.

Nvquist’s Stability Criterion and Polar Plots. The characteristic equation for a continuous-
time dynamic system is given by 1 + KG(s)H(s) = 0, where the complex variable s can be written as
the sum of a real and an imaginary part, s = ¢ + jw. In a polar plot the product KG(jw)H(jw) is
plotted as a complex vector having a magnitude and phase angle with the frequency w as a parameter.
The critical point for stability on this plot is the point —1, where the magnitude is unity and the phase
angle is —180°.

Nyquist’s stability criterion, which applies to all systems whether or not they are minimum
phase systems, states that the number of unstable closed-loop poles is Z = P — N, where P is the
number of open-loop poles in the right half of the complex plane and N is the number of
encirclements of the critical point made by the polar plot. Counterclockwise encirclements are taken
to be positive when applying this method. A minimum phase system is a linear, constant-coefficient
dynamic system whose transfer function has no open-loop poles or zeros in the unstable region of the

complex plane.

Log Magnitude Versus Phase Angle Plots. These plots contain the same information as a
Bode plot, but the magnitude and phase angle are combined on a single plot with the radian frequency

@ as a parameter.
2.6.2 Steady-State Accuracy

A controlled dynamic system which has satisfactory steady-state accuracy is one in which the
error signal, e(t) or e(k), rapidly approaches zero or a sufficiently small value as time increases. The
Laplace-transform final value theorem is classically used to analyze this requirement without the need
to actually solve for the response of the dynamic system to any test input. For a continuous-time

system:

lim t » o e(t) = lim s » 0 [sE(s)] ,
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while for discrete-time systems, the corresponding Z-transform final value theorem is:

lim k -» o e(X) = lim z - 1 [(z-DE(@2)] .

The results obtained by this process are valid when the indicated limits exist. A set of test
input signals, the step, ramp and parabola, are assumed, and a set of static error coefficients called
the position, velocity, and acceleration coefficients are then developed. The values of these
coefficients provide a measure of the system’s ability to closely follow both the test input signal and

other arbitrary inputs.

For practical applications, Table 2-1 from Dorf>* can be used. In this table a continuous-time
dynamic system is characterized by the parameter Type, the number of integrations existing in the
forward transfer function. For Type 0, 1, and 2 dynamic systems Table 2-1 indicates the static error

coefficients for unit step, ramp, and parabolic input signals.

TABLE 2-1. SUMMARY OF STEADY-STATE ERRORS

INPUT
NUMBER OF STEP, r(t} = Parabola,

INTEGRATIONS IN A Ramp, At, At?/2,
Gl(s), type number R(s) = A/s A/s? A/s®

0 e, = B Infinite Infinite

1+ Kp
1 e, =0 -I% Infinite
A
2 e, =0 0 .I..(_a

2.6.3 Satisfactory Transient Response

A controlled dynamic system having a satisfactory transient response is one in which, for
abrupt changes in the input or reference signal, there is no excessive overshoot, an acceptably small
amount of oscillation at an acceptable frequency, an appropriate final value, and a satisfactory speed

of response or settling time.

All of these transient response factors are interrelated. All depend on the location of the

closed-loop poles in the complex plane, and the closeness of these poles to the appropriate stability
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boundary. The term, “relative stability,” is sometimes used to describe the performance of a stable

dynamic system in response to test inputs.

A root-locus plot indicates directly the location of the closed-loop poles of a proposed system,
and in classical control system design the root-locus plot is most often used to study transient response
issues for either continuous-time or discrete-time systems. Bode plots, Nyquist plots, and log-
magnitude versus phase angle plots can only give indirect information regarding the transient response
of a system, and, as a result, these methods are more suited to the investigation of frequency response

questions.

Two classical measures used to indirectly provide a measure of a system’s stability and
transient response are the gain margin (GM) and the phase margin (PM). The GM is the additional
gain which may be inserted in a system, with no change in phase angle, and still maintain a stable
system. On a Bode plot the GM is measured by the vertical distance from the open-loop magnitude
curve to the 0 dB line at the frequency where the indicated phase angle is —180°. The GM will be
positive if the open-loop magnitude curve is above the 0 dB line at the frequency where the indicated
phase angle is —180°.

The PM is the additional phase shift which may be inserted in a system, with no change in
gain, and still maintain a stable system. On a Bode plot this is the vertical distance from the open-
loop phase angle curve to the —180° line at the frequency where the indicated magnitude is 0 dB.
The PM will be positive if the open-loop frequency curve is above the —180° line at the frequency
where the indicated magnitude is 0 dB.

Classical design practice based on experience dictates that a system having an acceptable

transient response will have gain and PMs of about:
PM > 30°
GM > 6dB.

Many control systems have their transient response dominated by a pair of complex poles
lying in the left-hand complex plane. Analytical results for second-order systems can be used in this

case, and the following rules of thumb can be applied:
Damping ratio = 0.01 PM (PM in degrees)
Percent overshoot = 75 — PM

(Rise time) * (closed-loop bandwidth, rad/sec) = 0.45(2w) .
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2.6.4 Satisfactory Frequency Response

A controlled dynamic system which has a satisfactory frequency response will have an
acceptable bandwidth, a finite maximum gain from input to output, an acceptable frequency at which
the highest gain occurs, and adequate gain and PMs. Bode plots, Nyquist plots, and log-magnitude
versus phase plots are classical tools for investigating the frequency response of continuous-time and

discrete-time dynamic systems by evaluating the open-loop transfer function.

To determine the closed-loop frequency response of a continuous-time system, a Nichol’s
chart, which performs a conversion from the open-loop frequency response to the closed-loop
frequency response, is often used. When the required computations are done by hand it is common
classical design practice to first use an open-loop method to develop the necessary open-loop

magnitude and phase angle information. This open-loop data is then plotted in Nichol’s chart format.

A digital computer can conveniently be used to calculate open- and closed-loop frequency
responses in terms of complex numbers, converting the components to a magnitude, and phase angle.
The magnitude may then be converted to decibel (dB) format for display and output and a computer-

driven plotting routine can be used to present the resulting frequency response curves.

2.7 Classical Methods for Improving Performance

The classical analysis methods outlined above also serve as design methods. A trial and error
procedure is used, in which the designer analyzes the present system’s performance, decides on a
modification to the system, and then re-analyzes performance to verify the design’s success. The
addition of feedback loops or the addition of compensation networks can be analyzed by the use of
root-locus, Bode, or Nyquist methods. Any modifications made will reshape the root-locus and

modify the gain and PMs of the system. The static error coefficients will also be altered.

When the performance of a single-input, single-output dynamic system is not satisfactory in
terms of its frequency or transient response, stability, or steady-state accuracy, the following four

classical remedies can be considered.

(1) The open-loop gain K can be adjusted. The amount of adjustment required can be
estimated by one of the previous analysis methods. For example, a root-locus plot will reveal the
changing location of the closed-loop poles as the gain is varied. Since the root-loci are well defined,
it may be the case that no point on the root-locus will give acceptable performance. In that case the

system structure must be modified by the addition of other components.
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(2) It may be possible to change the structure of the system slightly, perhaps by the addition
of other feedback signals. The addition of a minor feedback loop will alter the shape of the root-
locus, and change the closed-loop pole locations for each value of gain K. In missile systems, the
addition of rate and acceleration feedback loops is a common means of improving the stability and

performance of the resulting closed-loop system.

(3) The addition of compensation networks in the forward or feedback path, or the use of
discrete-time compensation algorithms, can alter the root-locus and change the magnitude and phase

characteristics of the system so as to yield satisfactory performance.

(4) Major changes in the system structure may require redesign and the substitution of higher
performance components. For example, achieving very high gains is not a problem in an electronic

system, but the creation of high mechanical gains may require hydraulic rather than electric motors.

An alternative method of design by means of synthesis rather than repeated analysis is also
available. In the synthesis approach, the required specifications and performance are translated into a
desired closed-loop transfer function. For example, if the desired closed-loop transfer function is

specified by M(s), it can be algebraically related to the required compensator G.(s):

(G5)G()

MO = e eeeRe)

G() = MO
T (a-MeHe)

When designing an analog electronic system, this result places certain technical restrictions on
the desired M(s) if the compensator G.(s) is to be physically realizable in terms of passive resistive,
capacitative, and inductive components. For a discrete-time system, the variable z replaces s in the
preceding equations. Since a discrete-time system is implemented in an algorithm, or computer
program, there is no need for the designer of a discrete-time digital compensator to be concerned
about physical realizability. For this reason, the synthesis method of design is more widely used for
the design of discrete-time systems, while the analysis approach is favored for continuous-time

classical design.

One additional design parameter which enters into a discrete-time system is the sample time,
T. According to Nyquist’s sampling theorem, an arbitrary band-limited signal must be sampled at a
rate corresponding to twice the highest frequency component of the signal. This highest frequency is
also a measure of the bandwidth required of the control system. In practice, a sampling rate of more

than twice the highest frequency of interest is used. In a closed-loop system, the sample time T
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interacts with the gain K and affects the locations of the closed-loop poles and, in turn, system
stability.
2.8 Classical Performance Measures and Analytical Methods

Classical control theory relies on the use of system models specified in terms of transfer
functions or block diagrams to answer the following three general questions about the control of linear

constant-coefficient time-invariant systems:

e  What are appropriate measures of system performance that can be easily
applied to develop a feedback control system?

e  How can a proposed feedback control system be analyzed in terms of these
performance measures?

¢ How should a control system designer modify a system if its performance is
unsatisfactory?
The methods of analysis used in classical control theory were developed before the
widespread use of computers, and, as a result, these methods strive to develop as much information
as is possible about the response of a system, c(t) or c(k), to an arbitrary input r(t) or r(k), without

the necessity of solving the system’s dynamic equation for every possible input signal.

The problem of considering an infinite variety of input signals was solved by relying on a
standard set of mathematical test inputs. Step functions, ramp functions, and sinusoids are all used to

develop estimates of a classical control system’s performance.

The way in which several of these classical methods can be used to design both continuous-
and discrete-time control systems will next be shown by a series of examples. The examples are
intentionally simplified to introduce the reader to the classical approach to closed-loop control system
design.

2.9 Continuous-Time Control System Design Example

Figure 2-3 shows an open-loop system proposed to control a portion of a tactical guided
missile. This dynamic system consists of an electronic power amplifier, which converts a low-voltage
command input signal into a high-voltage servomotor input signal, a servomotor which responds
accurately to its input signal and produces a mechanical torque output, a gear box which links the

servomotor to the missile control surface, and a potentiometer which serves as a sensor measuring the

control surface position.
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Figure 2-3. Open-loop system components.

The open-loop system has a high gain, but is clearly unstable due to the presence of a pole at
s = 0. The open-loop transfer function of this dynamic system is:

45000

%) = D30

This transfer function was obtained by analyzing the results of a frequency response test performed on

the open-loop system.

Since this transfer function is available in factored form, a Bode plot design method will be
used to develop a closed-loop control system which is stable and has an acceptable level of
performance. The design problem is to develop a closed-loop system which meets the following
performance specifications:

¢ GM greater than 5 dB

e PM greater than 45°

e steady-state error in response to a unit ramp input of less than or equal to 0.05

Since the dynamic system is a type-one system having a single pole at s = 0, the transient
response of the resulting closed-loop system to a unit step input will involve an initially uncertain
amount of overshoot, but will eventually settle to a steady-state error of zero. The transient response
to a unit ramp input will involve a constant, predictable steady-state error. The system will follow
the commanded ramp input, but in the steady state, the dutput will never quite equal the input. These

transient responses will be graphically presented later.

Based on experience, the designer elects to insert a compensation network in the forward path
and to employ unity feedback. This compensation network has the transfer function G(s), and the

resulting closed-loop system is shown in Figure 24.

Figure 2-5a is a Bode plot for the uncompensated open-loop system. Note that this plot
consists of two curves—the upper, Figure 2-5a, showing the magnitude of the frequency response in
decibels, and the lower, Figure 2-5b, showing the phase angle of the frequency response in degrees.

Future Bode plots will not give separate titles for the two curves. The GM of the uncompensated
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Figure 2-4. Closed-loop servomechanism,

4

system is about —27 dB, and the PM of the uncompensated system is about —42°. The
uncompensated open-loop system is unstable. To improve the performance of this system, the phase
angle which now occurs at that frequency where the open-loop gain is 0 dB must be increased, and
the GM must be made positive. This can be accomplished by the use of a phase-lead network. The
phase-lead network has the following transfer function:

- K(1+73)

G(s) Tras

The parameters 7 and o are selected by the designer to place the pole and zero of the compensation
network at locations which result in a stable closed-loop system. A procedure for designing a phase-

lead compensator has been outlined by Dorf?®, and will be used in this example.

The phase-lead compensation network can be designed by completing the following steps:

(1) Evaluate the uncompensated system PM when the steady-state error conditions are
satisfied. The steady-state error conditions are satisfied by adjusting the gain of the uncompensated
open-loop system. This adjustment may be accomplished by a hardware adjustment or by the addition

of an auxiliary amplifier.
(2) Determine the necessary additional phase lead, ¢,, allowing for a small additional phase
angle safety margin.

(3) Evaluate the parameter a:

o \Lsing)
(1-sinig,)
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Figure 2-5a. Frequency response in decibels for a Bode plot of an
uncompensated open-loop system.
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Figure 2-5b. Phase angle of the frequency response in degrees for a
Bode plot of an uncompensated open-loop system.
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(4) Evaluate the value 10 log(c). Determine the frequency where the uncompensated
magnitude curve equals —10 log (c0). This frequency will be the compensated 0 dB crossover
frequency, and the compensated system bandwidth w,. The compensator provides a gain of 10 log(w)

at the frequency w,. The parameter 7 is determined from:

1.0

fou V)

(5) Construct the Bode diagram for the compensated open-loop system, check the resulting

T =

gain and PMs, and repeat the design steps if necessary.
The following steps will next be executed for the design problem presented above.

Step 1. The steady-state error requirement of 0.05 requires that the velocity coefficient K,
equal 1.0/0.05, or 20.0. To achieve a gain change, an auxiliary amplifier having a gain of K, is

added to G(s). Then:

_ L0 _ b
K, = 555 = 20.0 = lim 520 [sG@)]
5
K. = lim s»0 _S_ﬂ_l.(*‘_
v (s+2) (s +30)
K =0.0267 = —L_ .
. 37.5

The required gain will be obtained by adjusting the gain of G(s) plus the auxiliary amplifier to
be equal to 1200. Figure 2-6 is a Bode plot of the uncompensated open-loop system when the gain is
adjusted to 1200.

The PM of the uncompensated system with a gain of 1200 is about +7°. The GM of the

uncompensated system is about +5 dB. The closed-loop system resulting from only a gain change is

marginally stable, and would exhibit severe overshoot and sustained oscillations in response to unit
step and ramp test inputs.

Step 2. The specified PM is 45°, and the PM resulting from Step 1 is 7°. The necessary
additional phase lead is 45° — 7% degrees = 38° + 10% degrees = 42°. The additional required
phase lead ¢, is 42°.

Step 3. The parameter « is computed as o = (1+5sin(42°))/(1 —sin(42°)) = 5.044. Select

alpha = 5.0 for convenience.
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Figure 2-6. Bode plot for an uncompensated open-loop
system with a gain of 1200.
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Step 4. The value 10 log(e) = 10 log(5.0) = 7.02 dB. The compensated crossover
frequency w,, occurs at about 9.5 radians per second, where the uncompensated magnitude curve

equals —7.02 dB. The parameter 7 can now be determined:

1.0 _ 1.0 = 0.047 .

t@) bsyEo)

Select 7 = 0.05 for convenience.

The transfer function of the compensator is:

_ 1 (1+0.259)
6L = 3 005y
The gain of the auxiliary amplifier must now be increased by a factor of 5 to account for the

factor 1/5 in the compensator transfer function. K, then becomes 0.133.

Step 5. Figure 2-7 is a Bode plot for the compensated, gain-adjusted open-loop system. The
resulting PM is about 37°, somewhat less than required but satisfactory, and the resulting GM is
about 12 dB, somewhat better than required. These results, which do not exactly meet the design

specifications, indicate the need for an iterative approach to classical control system design.

The original open-loop system was a third-order system. The addition of the compensator
makes the composite system a fourth-order system. The rules of thumb applied to second-order
systems can be used to estimate the damping factor, (0.01 PM), as 0.37, indicating a lightly damped
system, and a percent overshoot of 25% in response to a unit step input. Figure 2-8 illustrates the
transient response of the compensated closed-loop system for unit step and ramp inputs. Note that the
measured percent overshoot is about 40%, and the steady-state error for a ramp input is 0.05 as

required. A block diagram of the complete closed-loop control system, including the compensator, is

shown in Figure 2-9.

The transient responses illustrated in Figure 2-8 were obtained by assigning a state variable to
each of the integrators, assuming all initial conditions to equal zero, and numerically integrating the
resulting first-order differential equations by means of a rectangular integration process with a step

size of 0.005 seconds.

Several approximations were made during this design example, including the selection of
convenient numerical values for the parameters « and 7. If the resulting transient performance was
determined to be unsatisfactory, the designer would repeat the process, adjusting these values until the

performance specifications were met as closely as possible. In some cases, it may be impossible to
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Figure 2-7. Bode plot for a compensated, gain adjusted (gain=1200)
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Figure 2-8. Transient response of a compensated closed-loop system

for unit step and ramp inputs.
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satisfy all the design requirements without substantial modifications to the structure of the underlying

dynamic system.
2.10 Discrete-Time Control System Design Example

Discrete-time control systems similar to that illustrated in Figure 2-10 can also be designed by
Bode plot methods. In Figure 2-10 the controlled system operates in continuous time and is described
by the transfer function G(s). The discrete-time nature of the control problem results from the use of
a digital computer to control the signal sampling process and to execute the algorithm corresponding

to D(z), a discrete-time compensator.

The control system design problem is to devise a suitable compensation algorithm which will
result in good closed-loop system behavior. The analog-to-digital (ADC) and digital-to-analog (DAC)
converters shown in the figure are necessary to sample the various signals and transform them
between the discrete-time digital computer domain and the continuous-time domain of the original
open-loop system. The DACs and ADCs are simultaneously clocked and sampled at a time interval
of T seconds. A small delay, corresponding to the time required to execute the compensation
algorithm, is anticipated and, if sufficiently small relative to any resulting closed-loop system time

constants, is ignored.

Compensator
0.25 -
R E q4 q4 U a3 @< a2 qQ2 ql ql (o]
(D) 1 . R BN I D] - -
- 20 S s TP S s

A

< j@ >11200
= A 4 4
L_ 20 2 / 30 j«—

Figure 2-9. Compensated closed-loop system with a gain of 1200.
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Figure 2-10. Discrete-time closed-loop control system.

The transfer function of the uncompensated open-loop system is the same as that considered in
the previous continuous-time design example:

_ 45000
O = T

If the sampling interval T is sufficiently small compared to the time constants and natural
frequencies of the compensation algorithm D(z), the design of the compensation algorithm can be
initiated by first designing a continuous-time compensator as in the prior example, and then
determining an equivalent discrete-time algorithm by one of several means. In the prior continuous-

time design example, a continuous-time compensation network was designed and implemented in

analog form:
. (1+0.25s)
G = 5751170059 -

Note that in this example the auxiliary amplifier’s gain adjustment factor 1/37.5 = 0.0267 has
been included in the transfer function of the compensator, and the factor 1/5 has been eliminated.
The bilinear transformation can be used to develop a discrete-time equivalent transfer function. This
is done by replacing the variable s by the following expression:
¢ = 20-z-1)
T (1+z-1)

After algebraically clearing all terms, and assuming a value for the sample time T equal to 5

milliseconds (0.005 seconds), the following discrete-time compensator transfer function is obtained:
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_ 0.0267 (1012-99)
(21z-19) )

D(z)

A simulation block diagram for this compensator can be obtained by the use of an auxiliary
variable technique:

Y@ _ Y@ W@ _ 0.0267(101z-99)

P@ = x5 = Worke 212-19)

Y@ . -
Let 7o = 0.0267(1012-99) and

W(z) _ 1
X(z (21z-19) °

Then Y(z) = 0.0267(1012W(2)-99 W(z)) and

W) = ['z‘li] (X@) + 19W@)) .

Figure 2-11 shows the resulting discrete-time compensator structure and the structure of the
resulting closed-loop control system. The block labeled z™* represents a time delay of one sample
time. The dashed line indicates the compensation algorithm performed by software imbedded in a

control microprocessor.

The transient response of the discrete-time closed-loop control system is shown in
Figure 2-12. Note that the sample time of this system is 5 milliseconds. If the sample time is

altered, the compensation algorithm must also be changed.

Microprocessor Q3 - Q3 q2 q2 q! ql C
> 101 f——s@—[1200—> + >@— L | @ + -
D{2) . Y S N S l < S
-89 -
R E W w L= 1 2 L— 30 |+
D G 1 b
- 5 — 21 -
- N 21
-19 |« 3

Figure 2-11. Discrete-time closed-loop control system with a gain of 1200.
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Figure 2-12. Transient response of a discrete-time closed-loop control

system for a sample time of 5 milliseconds.

GACIAC SOAR-95-01
Page 2-28




2.11 Summary

A brief overview and introduction to some of the methods of classical controli system design
have been provided. System representations, the analysis of continuous- and discrete-time single-
input, single-output constant-coefficient dynamic systems, the reasons for using feedback, classical
control system performance measures, and classical methods for improving the performance of

control systems have been discussed.

Two examples which indicated several approaches to the classical design of a closed-loop
control system were presented. The first example applied a Bode plot method to develop a lead
compensator for a continuous-time system. The second example applied a bilinear transformation
which resulted in a compensation algorithm suitable for implementation in a microprocessor-based
discrete-time control system. These examples were intentionally kept simple to introduce the basic
concepts and allow a comparison to be made regarding the transient response of both closed-loop
systems. The performance of the discrete-time control system was illustrated and was very nearly

equal to that of the continuous-time system.
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CHAPTER 3
MODERN CONTROL THEORY

3.1 System Modeling

Modern control theory involves the application of mathematical techniques to analyze,
synthesize, and optimize devices for the control of a wide variety of systems. Before designing a
means to control any dynamic system, a mathematical model of the dynamic system must be derived.
This model must include all variables important to the control problem. The mathematical model of a
dynamic system represents the operation of the system over time. A key notion in modern control

theory is the use of a state variable model for the dynamic system.

The modeling phase is basic to all applications of modern control theory, and involves both
the selection of the dynamic system’s components and the development of appropriate mathematical
models for each component and their interactions. A preliminary measurement and data processing
phase is often required to sufficiently characterize each device or component. The complexity of this

preliminary phase depends on the nature of the dynamic system and the overall control objective.

The use of state variable methods has been all pervasive during the last two decades. The
state variables of a dynamic system are the smallest set of numbers which define the values of all
variables of interest relating to a dynamic system or mathematical model at a particular point in time
or space. State variable models are commonly applied in modern control theory to represent dynamic
systems and their components. The state variable technique is applicable to systems described by
linear or nonlinear continuous-time differential equations or discrete-time difference equations. The
main reason for the use of the state variable technique is that it permits the use of matrix algebra and

vector notation, resulting in highly compact mathematical descriptions of modern control problems.

The most commonly employed state variable model is the linear differential equation:
d_ﬁg = Ax(t) + Bu(9,

or its nonlinear time-varying counterpart:

dx(t)

3t =f(x, u, t).
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In these models, x is an n by 1 column vector whose time-varying entries x,, X, ..., X, are the

n state variables of the system, and u is an m by 1 column vector whose time-varying entries u,, u,,

..., Uy are the m control inputs.

For the linear differential equation model, A is an n by n square matrix of constants which
defines the relationships between the state variables and their derivatives and B is an n by m
rectangular matrix which defines the way in which the control inputs affect the derivatives. The

derivative of each state variable indicates the way in which the state variable evolves or changes over

time.

For the nonlinear time-varying model, f(x, u, t) is a column vector of n functions f;(x, u, t),
fi(x, u, t), ..., f,(x, u, t) which models the way in which the state variables change with time, the

applied control inputs, and the state variables’ mutual interaction.

As an example of the use of state variables, consider the motion of a point-mass particle
moving in a vertical plane. This simple model is often used to represent the flight of projectiles,
missiles, and other weapons. The particle’s motion is completely defined if its position and velocity
are known as mathematical functions of time. The horizontal and vertical positions and velocities of
the particle are a set of state variables for this dynamic system. Four state variables are required in

this example, and Figure 3-1 illustrates the resulting control problem.

The particle moves in the plane under the influence of a constant thrust force, F. The thrust
direction is assigned to be the control input. This direction is the angle 8 in radians measured relative
to the horizontal axis. The thrust force F can be resolved along the x and y axes into its vertical and

horizontal components, F sin(8) and F cos(8).

Newton’s law can be applied to develop a set of dynamic equations which mathematically
model this system. Since applied force equals mass times acceleration for each component of the
particle’s motion, the following equations determine the horizontal and vertical accelerations of the
particle as functions of the particle’s mass, thrust, and applied control input:

d’(t) = [..P;] cos (3)
m

dt?

dt? m

die . [E] sin (8) .
To fully define the particle’s motion, it is necessary to know the position and velocity along

both axes. One way to achieve this result is to directly solve the above set of second-order
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differential equations. A second method, and one which leads to the application of modern control

theory to this problem, is to convert the mathematical model into a state-variable format involving a

set of first-order nonlinear differential equations.

y(t)
A

Thrust F

Mass M

Figure 3-1. Particle motion in the vertical plane.

One method for obtaining the required state variable model is to assign two state variables, x,

and x,, to represent the horizontal and vertical positions, and their time-derivatives, x; and x,, to

represent the corresponding velocities:

dxl_x
x s
dx,

e

Then, a simple substitution gives:

dx, d dx,_dzx,_F '
_dT-'a-t{T ‘*&?‘[a]”s“”
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_ _d%x, (F) .
-d?‘a[‘aT '—dt?‘[?ﬁ]sm‘ﬁ"

By defining the state variable vector x = [x,, x,, X5, X,], and the control variable vector
u = [u,] corresponding to the single control input u; = B, and by defining four functions f; through f,

as:
fi(x,u, ) =x,,

f,(x,u, t) =x,,

f,(x, u, ) = [.g] cos (u,) , and

f,x, u, ) = [_Ii] sin (v} ,
the motion of the particle can be written in the state variable form:

%’:. =fx, U f),

where f = [f, f, £, f]7.

The process outlined above has resulted in a notationally compact mathematical model describing the
motion of a particle in a vertical plane. This model uses four state variables, and each state variable
is defined by a first-order differential equation whose right-hand side involves only the model’s

parameters, thrust F and mass m, the single control input 3, and the four state variables themselves.

The variable T is a sample time, T = dt. The notation here indicates that f is based upon a discrete-

time state.

If the initial position and velocity of the particle is specified by the state variable vector x(0):

x(0) = [x,(0), x,(0), x,(0), x, O],

the motion of the particle can be determined by specifying the control input u = [u,] as a function of
time, and integrating the multi-dimensional state variable differential equation. The state variable
differential equation describes the changes in the particle’s velocity and position and the way in which
the rate of change of velocity depends on the applied control input. For this reason state variable

differential equations, or difference equations, are also called state transition equations.
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One way in which this model can be implemented in a computer program is by converting the
state variable differential equation to a state variable difference equation. A straightforward method
involves replacing the derivatives by their approximations:

dx(t) _ (x(t+dt) - x)
dt dt

Here, x(t) is the value of the state variable vector at time t, x(t + dt) is the value of the state
variable vector at a slightly later time t + dt, dt is the small time increment between observations of
the state variable vector, and dx(t)/dt is the value of the derivative, or rate of change, of the state

variable vector at time t. Rearranging terms, we can obtain the following expression:

~ dx(® | .
x(t+dt) x(t) + [ T ] dt .

The initial conditions are x(0). If the state of the system is observed at a set of time instants
indexed by k, where k = 0, 1, ..., and each instant is separated by a sample time T = dt, we can

change notation slightly and write:

x{k+1)T) = x(kT) + [dxg:T)] - T,

x(0) = specified .
Next, we can drop the explicit dependence on the sample time T and again condense the

notation:

x(k+1) = x(K) + [d’;(tk) . T,

x(0) = specified .

The continuous-time model has now been converted to a discrete-time model suitable for
programming on a digital computer. To apply this method to the previous example, it is necessary to
define the four components of the discrete-time state variable vector, [x,(k), X,(k), xs(k), x,(k)]", the
sample time, T, and the matrix-vector derivatives dx(kT)/dt = f(x, u, kT) = f(x, u, k), where

f(x, u, k) has the four components:
fl (x’ u, k) = x3 (k)
£, u, k) =x,()

f,(x, u, k) = [_:;] cos (u,(k))
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£,(x,u, K = [_Ii] sin (u,®) -

m

The applied control input u(kT) = u(k) = [u,(k)] is indexed by k in a manner identical to the

way in which the state variables have been indexed.

The motion of the particle can now be computed by a relatively simple program which inputs
the initial position and velocity and the sequence of applied control inputs, and outputs the values of
the state variables at the next sample time. This process is fundamental to all applications and

implementations of modern control theory.

To summarize, we began by defining a problem of interest, the motion of a particle of
constant mass m in a vertical plane under the influence of a constant thrust force of magnitude F and
an applied control input 8 which determines the direction of the thrust. A mathematical model of this
dynamic system was derived by applying elementary physics. The original model obtained was a pair
of second-order differential equations. Four state variables representing the particle’s position and
velocity measured along the horizontal and vertical axes were defined. A state variable model
involving four first-order differential equations was then developed. This model is appropriate for use
in further mathematical analysis, or simulation of the continuous-time dynamic system. The
continuous-time model was then converted to a discrete-time model suitable for implementation in a

digital computer program.
3.2 The Development of State Variable Methods

The previous example illustrated the way in which state variable modeling leads to a variety of
mathematical expressions for a particular dynamic system, and the resulting compact nature of the
state variable representation. The process illustrated is fundamental to the application of modern
control theory, as virtually all published results in this technology are presented in terms of a state

variable model.

The following sections discuss further applications of the state variable method. The historical
basis of the state variable method is outlined and the reader is introduced to stability analysis, optimal
control, pole placement, controllability, and observability of dynamic systems. All of these concepts
and design techniques are applicable to the design of guidance and control systems for tactical guided

weapons.
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33 Stability Analysis of Dynamic Systems

The emphasis on the state variable approach to modeling, analyzing, and synthesizing modern
controllers in feedback form originated in the modeling of dynamic system behavior by mathematical
systems of ordinary differential equations. The notion of reducing an n®-order differential equation to
a set of n simultaneous first-order differential equations is not a new one, having first been introduced
by the mathematician Poincaré®! in 1892. Poincaré also introduced the concept of the state variable

as a means of representing the past and present behavior of a dynamic system.

Lord Rayleigh®? investigated the stability of the dynamic system defined by the state transition

equation:
dx(t) _
—5 Ax(®),

x(0) = specified ,
in 1894. No control input is applied to this dynamic system. The system’s response is due purely to
the initial conditions x(0). Lord Rayleigh showed that the motion of this freely responding,
uncontrolled system could be resolved into a set of n motions, one motion for each state variable in

the model.

If the state variable vector is regarded as a point in n-dimensional space, these motions occur
along n independent vectors in this multi-dimensional space. These vectors are called the
eigenvectors of the system. The eigenvectors depend only on the contents of the matrix A, the
dynamic system model. The magnitude of the motion along each eigenvector depends on the initial

state of the dynamic system, specified by the initial condition x(0).

The solution to this state transition equation, the state variable trajectory, is given by the

following vector equation:
x(®) =celty +cey, +ceby + . +ceMV,

where the vector x(t) = [x,(t), x,(t), ..., X,(t)] is the state of the dynamic system, the ¢,, c,, ..., c, are
constants which depend on the initial conditions, the v, v,, ..., v, are the eigenvectors, and 1,, 1,, ...,
1, are called the eigenvalues. The eigenvalues, which may be complex numbers, roughly correspond

to a set of time constants for the dynamic system.

If the magnitude of any one state component is not to grow forever, the real parts of the

eigenvalues must be negative, ensuring that the exponential terms eventually decay to zero. This
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result is one indication of the natural stability of a dynamic system described by this state transition

equation.

Further investigations into the stability of dynamic systems were advanced by the publication
in 1892 of Lyapunov’s*® work. Lyapunov’s so-called second method is now the principle means for
addressing stability questions occurring in the control of nonlinear dynamic systems and the design of
adaptive control systems. Lyapunov’s second method addresses the stability of an uncontrolled

dynamic system without requiring the solution of the state transition equation.

The basic notion behind Lyapunov’s second method is that if the rate of change dE(x(t))/dt of
the energy E(x(t)) of a dynamic system described by the state variable vector x(t) is negative for
every possible state x(t), except for a single equilibrium state x,, that energy will continually decrease
and the system will eventually come to rest at the state x, where the energy attains a minimum value
E(x,). State variable modeling of dynamic systems played an important role in the development and

application of Lyapunov’s method.

3.4 Optimal Control

In the presentation to this point, no mention was made of the way in which the applied control
input u is determined. A second major application of state variable methods lies in the powerful
optimization techniques pioneered by Pontryagin*¢, developer of the maximum principle of optimal
control, and Bellman®3, developer of the dynamic programming algorithm. These techniques are

essential to the application of the branch of modern control theory called optimal control.

The basic problem of optimal control is to select from a set of admissible controls u(t) one

particular control input u*(t) which minimizes (or maximizes) the performance measure:

4

Ju) = j L{x(®), u), t) dt .

%
The operation of the dynamic system is described by a state transition equation having the

form:
11;9 = £ (x(®), u®, 1 ,

x(t,) = specified .

Here, t, is the starting time of the control interval (which may be t = 0), t, is the ending time
of the control interval (which may be t = o), and the function L(x(t),u(t),t) is selected by the control
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system designer as a measure of the performance desired from the controlled dynamic system. As an
example, L might indicate the final distance of a point mass moving in a vertical plane from a desired
terminal position. Optimal control theory provides a means for determining the best control input for
steering the particle from an initial position and velocity to a desired terminal position and velocity,

while simultaneously minimizing the terminal miss distance.

The maximum principle of Pontryagin is an extension of the Hamiltonian approach to

variational problems in analytical mechanics. The Hamiltonian function is defined as:

HX u,p, ) =L(X, u, t) +pTfx, u, t) .

The function L is taken from the performance measure J(u), the state transition equation yields
f(x, u, t), and the n-dimensional vector p(t) is called the costate vector. Here, the superscript T
denotes a transpose operation, necessary for the correct performance of the vector-matrix

multiplication operation.

Pontryagin’s maximum principle states that if an admissible control action u(t) is to be optimal
with respect to maximizing the performance measure J(u), it is necessary that the optimal state
trajectory, x"(t), optimal control action u’(t), and optimal costate trajectory p’(t) satisfy the following
differential equations:

dx*(t) _ 8H{x*(t), u*(®), p*(®), ¥
dt op

dp*(t) _ -6h(x*(®), u*(®), p*(®, 1)
dt ox ’

and that H(x'(t), u’(t), p°(t), t) attain a maximum due to u’(t). Note that the right-hand side of these
ordinary differential equations involves the mathematical operation of partial differentiation. The first
equation is simply a restatement of the system state transition equation. The second equation is an
additional set of state transition equations for the costates. In the mathematics of optimal control, the
costates play a role similar to that of Lagrange multipliers in conventional static optimization

problems.

To solve this set of 2n simultaneous differential equations (n for the state variables and n for
the costate variables), one must specify 2n boundary conditions. In many optimal control problems,
the initial values of the state variables are known, thus supplying n boundary conditions at the time t,.
The remaining n boundary conditions must come from an analysis of the problem, the desired system

performance, and any additional terminal constraints. Also note that the 2n simultaneous differential
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equations do not directly yield a solution for the optimal control input u’(t). The 2n equations form a
set of necessary conditions which the optimal control input must satisfy. If an arbitrary control input

satisfies these equations, it is possible, but not guaranteed, that it is truly the optimal control input.

By invoking Bellman’s principle of optimality, which states that portions of the optimal
trajectory are themselves optimal, a set of sufficient conditions can be established if the performance
measure J(u'(t)) satisfies a certain partial differential equation called the Hamilton-Jacobi-Bellman
equation. This equation describes the behavior of the performance measure along an optimal state
variable trajectory generated by an optimal control input, and serves as a means to check the
optimality of an input control u'(t) derived from application of the maximum principle. The manner
in which the Hamiltonian, the Pontryagin’s maximum principle, and Bellman’s principle of optimality
interact to provide a definition of the desired optimal control input will not be pursued here, but will

be further detailed later in this review.

3.5 The Linear Quadratic Regulator

For certain classes of dynamic systems, it is possible to derive explicit formulas for the
optimal control input. This process also relies on a state variable mode] for the system. In 1969
Kalman®¢ derived a rigorous solution for the linear quadratic regulator control problem. In this

problem, the dynamic system to be controlled is described by a linear constant coefficient state

transition equation having the form:
ii;%tl = Ax(t) + Bu®®),

x(0) = specified .
The number of state variables is n and the number of control inputs is m. The matrix A has n

rows and n columns, and the matrix B has n rows and m columns.
The performance measure to be minimized is the quadratic functional:

) = J. [xTQx + uTRu]dt ,

=0
where Q is an n by n square matrix of constants and R is an m by m square matrix of constants.
These constants are selected by the control system designer to reflect the importance of the various
terms in the resulting quadratic expression. In most applications, the goal is to drive the state of the

dynamic system as close to the multi-dimensional point x = 0 as possible, and hold the value of the
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state variables at that point. A control problem of this form is called a linear quadratic regulator
problem. Autopilots for tactical guided weapons represent a direct application of this design
approach. The goal in designing an autopilot is to devise a feedback control system which will
maintain the state variables of the airframe as close to a desired reference point as possible over the

flight trajectory.

The solution to this problem is a controller based on state variable feedback which takes the

form:
u(® = Fx@,
where F = ~-R-'BTK .

The feedback matrix F has m rows and n columns, and the n by n gain matrix X is the

solution of the algebraic Ricatti equation:
0=ATK +KA -KBR'BTK + Q.

Considerable effort has been devoted to finding efficient techniques for solving this equation
and obtaining numerical values for the elements of the gain matrix K. These values depend on the
state transition equations, in terms of the matrices A and B, and on the designer-selected weighting

matrices Q and R.

The dynamic system described by the matrices A and B must be controllable, in the sense that
there indeed exists a control u(t) which will drive the system to the desired state x = 0 in a finite
time, and observable, in the sense that all n state variables contribute to the performance measure J.
If these conditions are met, then a suitable gain matrix K can be determined as the solution of the
algebraic Ricatti equation. The resulting closed-loop feedback system is asymptotically stable, and for

any initial condition x(0) the system state will eventually reach the desired state x = 0.

The designer must choose the weighting matrices Q and R to reflect the trade-off between
penalizing excursions of the state variables from the desired state x = 0, and the desire to limit the

applied control action by assigning a penalty x"Qx.

The optimal linear regulator outlined above can stabilize an initially unstable system, be
designed to realize a prescribed multi-dimensional transient response, and provide a measure of
robustness necessary to deal with variations in the system dynamics due to variations in the matrices
A and B.

GACIAC SOAR-95-01
Page 3-11




The solution to the linear quadratic regulator problem is important because it provides a
methodology for designing closed-loop feedback control systems for an important class of control
problems. The method has been extended to time-varying problems, and also provides a basis for
many optimal control computational algorithms. The use of the state variable format is essential to

both the development and application of this important tool.

This method can also be applied to nonlinear dynamic systems, such as a missile airframe,
which are required to be stabilized about a nominal operation point. By linearizing the nonlinear
differential equations defining the dynamic system’s operation, a linear constant coefficient model can
be developed in which the excursions about the reference point serve as the state variables. The

linear quadratic solution can then be applied directly to stabilize the dynamic system.

3.6 A Linear Quadratic Regulator Example

An example will help to clarify this process, illustrating the use of the state variable format
and the way in which a closed-loop control system can be designed to stabilize a dynamic system.
The dynamic system under consideration is shown in block diagram form in Figure 3-2. This simple
system consists of a series connection of two integrating units. The input to the first integrator is an
externally supplied control signal. This signal is integrated twice and the result appears at the output
of the second integrator. The system is inherently unstable since a bounded control input such as a
unit step can in some cases produce an unbounded output, a ramp function in this case. The open-

loop transfer function has a pair of poles at the origin, s = 0, of the complex plane.

X, (t) I iz(tL 1
> _— v Ll _é_ >
u, (t S _Ix, X, (1

Figure 3-2. Block diagram of an unstable dynamic system.

The two state variables are the outputs of the integrators, identified as x, and x,. The initial
performance of this system is considered unsatisfactory because an undamped response results for a

step input signal or a disturbance signal. The state transition equation which represents this system is:
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. 01
where the matrix A = ,:0 ] and

0
the matrix B = [IJ .

The performance measure to be minimized is:

Ju) = j [x™QX + uTRu] dt,

U=

where Q = I is a 2 by 2 identity matrix, and R = r is a one-dimensional scalar matrix. The value of
r is selected by the designer to contrast the expenditure of the dynamic system’s control energy,
measured by the term u™Ru in the performance measure, with the importance of maintaining the

values of the state variables near zero, measured by the term x™Qx.

State variable feedback will be used to design a control system for this dynamic system and

obtain a stable response. The state variable feedback is represented by the matrix equation:
u=Fx,

where F = -R-! BTK = -[_1.] BTK ,
r

and the steady-state Ricatti equation is:

0=ATK +KA -KBR'BTK +1.

When r = 1 and this equation is solved for the matrix K, the result is:

=\/371 and
1 /3

el

The resulting stabilizing feedback control system is shown in Figure 3-3. The resulting

trj
"

closed-loop system has a complex pair of poles at:
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u, (t) )'(1 (t) 1 X, ) X z(tl 1 X Z(t)‘
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A
-1 |-
- -1.732 j«—Y

Figure 3-3. Stabilizing feedback control system.

5T
2

an undamped natural frequency of 1 radian per second and a damping factor of 0.86.

The stable transient response of the controlled dynamic system when the initial conditions are

{1,017 can be determined analytically:

x,(f) = -2.0e034 gin (0.5t-30°) + 2.0/3 0% gin (0.51)
X,(t) = -2.0e 3% sin (0.5¢) .

By specifying the performance measure, the designer is thus able to obtain in a direct manner
a closed-loop control system which stabilizes the system about the operating point [0, 0]F. The use of
the state variable formulation and Kalman’s solution to the linear quadratic control problem has
eliminated the need for trial and error solutions to this design problem. The control system design

which results is, however, dependent on the designer’s choices for the weighting matrices R and Q.

3.7 State Variable Feedback and Controllability

When state variable feedback, u = Fx, is selected as a means for regulating the state of a
linear dynamic system about a reference point such as the origin, the process of pole placement, or
eigenvalue assignment, can be applied. This method provides an alternative design approach, and the

resulting closed-loop control system can be different than that obtained by means of the linear

quadratic design approach.
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The nature of a linear system’s transient response is determined by the eigenvalues and

eigenvectors associated with the closed-loop system:

dx
— = (A+B .
5 (A+BF)x

As reported by Kailath*?, Popov and Wohnam established a fundamental theorem indicating
the ability of a designer to achieve arbitrary eigenvalue assignment by the choice of an m by n
feedback gain matrix F. They assumed that complex eigenvalues occur in conjugate pairs, as is
always the case in a physical system, and showed that there is a real-valued feedback gain matrix F
which allows the eigenvalues of the closed-loop system (A +BF) to take on arbitrarily assigned values
if and only if the original linear system defined by the matrices A an B is controllable.

Controllability refers to the capability to transfer the state of a system to the origin, or any
other point desired, in a finite time period. The concept of controllability plays an essential role in
the application of state variable methods in modern control theory. The solution to a particular
control problem may not exist if the dynamic system is not controllable. Most physical systems are
fortunately controllable (and observable), but their mathematical models may not possess these
desirable properties. For that reason it is necessary to test the model of each system to determine

whether or not the model itself is controllable.

Results concerning the controllability of linear time-invariant systems are now readily available
and easy to use. The controllability of a linear time-invariant system can be determined by several

tests, one of which is to test the rank of the composite n by n+m matrix:
rank[B :AB: ... : An_lB] =n.

A matrix, C, is said to have a rank of n if there exists an n by n submatrix of C, which we
will call M, such that the determinant of M is nonzero, and the determinant of every r by r submatrix
of C, wherer = n + 1, is zero. As an example, consider the dynamic system specified by the state

transition equation:

sl F] [e

The structure of this dynamic system is shown in Figure 3-4. The required composite matrix

is formed from the matrix B and the matrix product AB:

e [ BB =]
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X.,(t) X.,(t) X, (t) X, (t)
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S S
« 1 |e— y

Figure 3-4. Uncontrollable dynamic system.

Since this dynamic system has two state variables, n equals 2. Since the rank of the composite
test matrix is 1, this system is uncontrollable. It will not be possible to determine a constant feedback
gain matrix which will allow this system to be stabilized about the origin for all arbitrary initial
conditions. The physical reason for this result is clear from Figure 3-4. The control input has no

effect on the evolution of the state variable x,(t).

On the other hand, consider a different dynamic system defined by the following linear time-

invariant state transition equation:

-l B Lle

The structure of this dynamic system is shown in Figure 3-5. The required composite matrix

is formed from the matrix B and the matrix product AB:

[ EH -]

Since there are two state variables, n equals 2. Since the rank of the composite test matrix is
2, this system is controllable and it will be possible to determine a constant feedback gain matrix

which will allow this system to be stabilized about the origin for all arbitrary initial conditions.
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Figure 3-5. Controllable dynamic system.

Controllability theorems for nonlinear dynamic systems which apply in general cases are not
yet available. Rather, the designer must select an operating point for the nonlinear system and
linearize the dynamic system about that operating point, developing in the process a linear state
variable model. The controllability of the linearized model is then used as a surrogate for the
controllability of the nonlinear system, under the added assumption that excursions of the system state
away from the operating point are kept as small as possible. The requirement of controllability can
also be weakened to a requirement of stabilizability, which only requires that the unstable states of a

system be controllable.
3.8 Pole Placement or Eigenvalue Assignment

Once it has been determined that the dynamic system in question is controllable, the
construction of a feedback gain matrix F which has the property that all of the eigenvalues of the
closed-loop system defined by [A + BF] have negative real parts, indicating an asymptotically stable

system, can be initiated.

The overall speed of response of the closed-loop linear system is determined by the placement
of the system’s poles or equivalently, the values of the system’s eigenvalues. The shape of its
response depends to a great extent on the closed-loop eigenvectors. For a single-loop system,
specification of the one closed-loop pole defines a unique system. For a multivariable system,
specification of the n closed-loop poles does not define a unique system. The designer has an added

capability to choose a set of appropriate eigenvectors and improve the performance of the resulting
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system. Kailath®" has specified necessary and sufficient conditions for the required gain matrix F to

exist, and has outlined a procedure for computing F.

To illustrate the process of placement we will use the unstable open-loop system shown in

Figure 3-6. This controllable system is defined by the following state transition equation:

o[ [] ] w

X, {t ] x,{t . @ X 1(t)‘ 1 X,
U1(t) — S v g S
A 1
-1 | / -
+2 |« r
Figure 3-6. Unstable open-loop system (s,= +3, s,=~3).
The poles of the open-loop transfer function are at s, = +3 and s = —3 in the complex

plane. Instability is indicated by the pole at s = +3.

A feedback control Iaw of the form u;, = [K; K,][x, x,]7 will be used to relocate the poles of

the open-loop system and achieve a stable response for any initial conditions:

-l ] el

dx _ [ 1 1 xl-
at (K,+2) (K,-1)| |x, '

The characteristic equation, the denominator of the resulting open-loop transfer function is

determined by:
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b 0 (s-1) -1

s) = det s
© l:(Kl+2) (S'(Kz'l)):l
D(s) = s + s(-K)) + (K,-K,-3) .

If, as an example, the designer requires the roots of this characteristic equation to be located at

s = —0.5 and s = —1.0, thus producing a stable system, the required characteristic equation is:

D(s) = (s+0.5)(S+1) = s% + 1.5s + 0.5,
and by comparing the coefficients of these two characteristic equations the required feedback gains
K, = —1and K, = —1.5 can be algebraically determined. The resulting system stabilized by state
variable feedback is shown in Figure 3-7. Note that in this figure we have also indicated the output

of the dynamic system as y,(t).

Methods for pole placement involving higher order systems require the use of a computer-
aided design system. Algorithms, procedures, and examples of pole placement continuous and
discrete-time systems can be found in Brogan*® and Franklin, Powell, and Ennami-Naeini*®. A

method proposed by Bryson and Luenberger*" involves transforming the system:

dx
_ = AX + B
5 X u

into the Luenberger multivariable companion form:

& Alx’ +Bu
dt

by means of an invertible state transformation:
x/ =Qx

where A’ = QAQ™!

and B’ = QB

are sparse matrices containing zeros, ones, and other nonzero elements. Then a simple method allows
the designer to assign eigenvalues by choosing F’ so that the closed-loop system [A’ + B’F’] has the
desired characteristic polynomial, whose roots, or poles, are the eigenvalues of the transformed
system. Transforming this result back into the original state coordinate system by means of F = F'Q

gives the desired result.
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Figure 3-7. System stabilized by state variable feedback (s, = -1.0, s,=0.5).

39 The Use of Output Feedback

The linear quadratic regulator method and the methods of pole placement illustrated in the
preceding sections have assumed that the complete state variable vector x(t) was available for use,
having been measured by suitable transducers or sensors. In many physical systems, only them = n
system outputs formed by linear combinations of the system state variables are available. These
outputs are formed in the dynamic system represented by the state variable differential and output

equations:

dx(t) _ +
— Ax(t) + Bu(t) ,
y@® = Cx(@®) ,

where y is an m by 1 vector of output variables whose entries are y;, y,, ..., ¥, and C is an m by n

matrix of coefficients. Usually the system is observable in the sense that it is possible to determine
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the system’s initial state x(0), and, by means of the dynamic equations, the system’s present state x(t),
based on measurements of the current output y(t).

Results concerning the observability of linear time-invariant systems are available and easy to
use. The observability of a linear time-invariant system can be determined by several tests, one of

which is to test the rank of the composite n by m +n observability matrix:

C
CA

CA

n-1
If the rank of this matrix equals n, the number of state variables, then the dynamic system is
said to be completely observable, and the system state variables can be determined based on

measurements of the system output.

A matrix D is said to have a rank of n if there exists an n by n submatrix of D, called M,

such that the determinant of M is nonzero, and the determinant of every r by r submatrix of D, where

r 2 n+ 1, is zero.

Consider the linear time-invariant system defined by:

@@ _ |1 1 x, () 0

&t [2 -1] [xz(t) * | )]
x,(t)

y@®) =[1 0] [l ]

O

The test for the observability of this system is:

=o)L

Thus this system is completely observable, and an output feedback controller having m = 1 of
its poles arbitrarily placed by the designer can be developed. Complex poles can be placed in pairs.
Letting u,(t) = F y,(t), where F is a 1 by 1 scalar matrix yields:

dX(t) - 1 1 xl(t) 0 Xl(t)
Tdt [2 —1] l:xz(t) ' [F1 [1 o] x,(t)
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dx(t) _ 1 1 x,(0)

@ |F+2) -1] [xm]

The characteristic equation of this dynamic system is:
D(s) =s? - (F+3) =0,

and the resulting poles are located ats,, = + (F+3) .

If, for example, the designer selects a value for F equal to —2, the poles are located at
s, = +1ands, = —1. The resulting system with output feedback is unstable due to the presence of

apole at s = +1 in the right hand complex plane. The resulting dynamic system is shown in
Figure 3-8.
3.10 State Variable Observers

If the dynamic system has been determined to be controllable and observable, but the complete
state is unaccessible, perhaps due to the lack or cost of suitable instrumentation, a feedback control
system based on the linear quadratic regulator or pole placement method can still be designed by
using an observation x'(t) of the true complete state generated by a state variable observer. The
Luenberger state variable observer™™ is an auxiliary dynamic system implemented by the control

system designer and attached to the original dynamic system.

The Luenberger observer is driven by the available dynamic system state variables, the input
to the dynamic system, and the dynamic system outputs. For a dynamic system described by the

following state transition equations:
d"_a(ttl = Ax(t) + Bu(®) ,

y@® = Cx(®) ,

a full state variable observer is defined by the state transition equation:
dx,(t) = A X () + B_y®) + Bu(t) ,

where A, = (A-B.C).

By selecting the matrix B, the designer determines the eigenvalues of the matrix A_ and thus
the asymptotic performance of the observer. A full-order state variable observer generates an
observation of the full n-dimensional state vector. A reduced-order observer generates an observation

of less than n of state variables. Methods for designing full and reduced-order observers for
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Figure 3-8. Unstable closed-loop system with output
feedback (s, =-1.0, s,=+3.0).

y,(t)

A

Dynamic
System

arbitrary-order linear constant-coefficients are detailed in Brogan®®. As an example of the general
design method we will use the dynamic system defined by the following state transition and output

equation:

dx(t 11 0

. [x,(t)]

x|

Letting B, = [ B, B, ] and substituting into the full state variable observer equation we have:

11 B, 0 (1-B) 1
Ac = A - BcC = = ’
2 -1] (B, 0 (2-B,) -1
and the characteristic equation for the observer is then given by:

D(s) = det(sI-A) = s> + B;s + (B,+B,-3) = 0.
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If, for example, the designer selects the observer poles to be located ats, = —3 and s, = -2,

the required characteristic equation is:

D(s) =s?>+35s +6,
and a direct comparison of coefficients yields the result B, = 5 and B, = 4. The resulting closed-
loop structure is shown in Figure 3-9. Note that the input to the state variable feedback controller is
now the output of the observer, rather than a pair of directly measured state variables. The input to
the observer consists of the dynamic system output y,(t) and the signal generated by the feedback

controller, u,(t).

When one or more of the state variables can be directly measured or determined by an
algebraic transformation of the system output vector, it is unnecessary to implement a full-order
observer and a reduced-order observer will suffice. One possible method for designing a reduced-
order observer is to design the full-order observer, and then implement only that subset of observer
equations required. A better approach is to design a reduced-order observer which produces only the

required state variable observations.

In the dynamic system represented by:

ax® _ |11 EC . |0
K3 [2 -1] wo| T[] B

X, ®]

y@®) =1 0] [ :

x,(t) |

the output y(t) equals the state variable x,(t), and so a reduced-order state variable observer will
suffice. To design a reduced-order observer for this system, the designer partitions the state variables

into two subsets containing the available state variables, x,;, and the unavailable state variables x,:

dx, (9

3 - a0 %0,

d_x;f_t)_ =2x,() - X + u®

¥, = x,(t) .
In the equation for dx,(t)/dt the terms involving x,(t) and u,(t) are then temporarily treated as

known time functions. Also,
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Figure 3-9. System stabilized by state variable feedback
and use of full-order observer.

dy, () _ dx,)

= =R+ X, or

dy, ()

0 = =3

= yl(t) .

The observer is assumed to have the same dynamic structure as the original dynamic system,

and a feedback term based on the state variable error between the observer system and the original
dynamic system is added:

dx. (t

_":t() = =10 + 2%, + K(x,0-x,(0)

dx (t dy, (¢

’%9 = x,® +2x, +K _);l_t_)-yl(t)-xk(t)] .
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An observer error is then defined and the appropriate algebraic substitutions made:

de(t) _ dx(t) _ dx,(0)
dt dt dt

?

L0 - px©-x0w0) -

dy, (0
—{;-f— -y,0 - xy,(t)” ,

[-xze(t) +2x, +K
20 - -14%) (1O, 0) = -1 e -

An appropriate pole location can then be selected by choosing a numerical value for the
feedback gain K. Generally the observer poles are placed slightly to the left of the dynamic system

poles in the complex plane. The resulting reduced-order state variable observer is then defined by the

state transition equation:

dx, (t)

—a = =%, () + 2x, + K -y, - xk(t)] .

dy,(®)
—dt

One difficulty encountered here is the need to develop the derivative of the system output,

dy,(t)/dt. This can be overcome by defining an auxiliary state variable:
x5(t) = x, (1) - Ky, (t) or x,() = x,(t) + Ky,() .

Then dx,(®) _ () _ dy,®) or
dt dt dat '

dx (¢ i
0 - 0+ 26 - Kpoma0)

dx,(t

_’;it(_) = -(14K) %0 + C-K)y,® .

Now x,(t) can be computed without the need for a derivative of y,(t), and the required
observation x,.(t) can be computed in terms of x;(t) and y,(t). If, for example, the designer selects a
feedback gain of K = 19, the observer pole is placed at s = —20, and the resulting closed-loop

control system including the feedback controller is illustrated in Figure 3-10.

If the linear dynamic system is subject to random disturbances or if the measurements of the
output vector y(t) are accompanied by random noise, the dynamic state observer is stochastic in

nature, and the estimate x.(t) can be performed in a least-squared-error manner. If all the
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Figure 3-10. System stabilized by state variable feedback
and use of reduced-order observer.

measurements of the output y(t) are corrupted by additive white noise, and the estimator is also of
order n and has an observer state variable vector z(t) = x_(t), the estimator is known as a Kalman

filter. More will be said about Kalman filters in a later chapter of this report.
3.11 Summary

This chapter discussed the modeling phase of system development, introduced the state
variable modeling method for dynamic systems, and indicated a few useful applications of this
method. The examples have included the analysis of system stability, the design of feedback
controllers based on the linear quadratic and pole placement methods, and the need for and use of
state variable observers which reconstruct the system state variables from measurements of the input
and output of the dynamic system. These methods and techniques have direct application to the

analysis, modeling, and design of guidance and control systems, particularly autopilots, for tactical
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guided weapons. Several additional examples indicating the use of these methods will be presented

later in this report.
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CHAPTER 4
DYNAMIC SYSTEMS

4.1 System Concepts

A system*! is any device, procedure, or scheme which behaves according to a well-defined
description. Control systems are described in terms of transfer functions, differential equations,
difference equations, and other mathematical constructs. The function of a system is to operate on an
input of information, energy, or matter, generally over a period of time, and to yield transformed
information, energy, or matter. A general system is illustrated in Figure 4-1. The description of this
system’s behavior may be a deterministic mathematical model or it may be a stochastic model which

involves random parameters or variables.

Information, Energy, or Matter Flow

\ 4

input "~ Output

— System S

Figure 4-1. Generalized system schematic.

The concept of a dynamic system*? is central to the application of modern control theory. A
dynamic system is described as any system whose behavior and description includes or involves
mathematical operations which depend on time. These operations may be time delays or lags,
differentiation, integration, or the action of time-varying functions. A dynamic system is thus any

system whose behavior evolves with or changes over time.

There are two further concepts associated with the notion of a dynamic system, the state of the
dynamic system, and the idea of a state transition. The state of a dynamic system is that set of
information which allows one to predict the dynamic system’s observable behavior. Knowledge of
the present state and the manner in which the state evolves, or is transformed, is sufficient to allow

accurate predictions to be made about the future state of the dynamic system. The state of a dynamic
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system is transformed as a result of the passage of time and any external influences. This

evolutionary process is called the state transition process, and the mathematical model which describes

the state transition process is called the state transition equation.

Dynamic systems have many applications in the analysis and design of tactical guided weapon
systems. Usually dynamic systems of interest are described in terms of sets of simultaneous
differential or difference equations. For example, the aerodynamic state of a missile involves the
missile’s position and velocity measured in terms of three linear coordinates (x, y, and z) and three
angular coordinates (pitch, yaw, and roll) for a total of six states. Additional states are required to

define the operation of the missile’s internal systems, the seeker, guidance computer, autopilot, and

actuators.

To completely define a dynamic system one must specify the time interval of the system’s
operation and the way in which time will be measured, the inputs and the outputs of the system, the
states of the dynamic system, and the mathematical relationships describing the state transition

mechanism.

The passage of time may be measured in a continuous manner, in which case the input, state,
and output are all functions of time, indicated by the continuous variable t, or in a discrete manner, in
which case the input, state, and output are all functions of the discrete index k. The initial time of
interest is usually taken as zero. The final time may be some finite time t_,, or infinity. In either

case the system is referred to as a continuous-time system or a discrete-time system.

In a continuous-time system all quantities are measured continuously over time. In a discrete-
time system, all quantities are measured only at discrete points in time. Continuous-time dynamic
systems arise naturally in problems of physical mechanics and analog circuitry. Discrete-time systems
arise naturally in the development of computer models or simulations of dynamic systems and

whenever a digital computer is used to control a process.

The input, state, and output may each consist of a single quantity or scalar, or a vector of
multiple quantities. A dynamic system having more than one state is called a multivariable system.
The state of any dynamic system represents a history of the applied input and contains all the
information necessary to compute the next state and current output of the system based on the current

input.

There are several important classes of dynamic systems which have wide application in
engineered systems such as tactical guided weapons. If the mathematical equations which define the

relationship between the next state, the present state, and the present input are linear, the system is
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called a linear dynamic system. These equations usually take the form of differential equations or
difference equations. Linear dynamic systems are algebraic in nature, and there exists a well-
developed theory and body of computational methods for the solution of linear dynamic system
problems. An important class of linear systems is the class of time-invariant linear systems in which
the state transition equations are linear constant-coefficient differential or difference equations. For
these highly-important systems, the Laplace-transform or Z-transform methods may be applied to
efficiently solve the state transition equations, finding the system output for any specified system input

and set of initial state conditions,

4.2 Dynamic System Problems

There are five general classes of problems which arise in the study and application of dynamic

systems:

implementations
networks
simulations
simplifications
analysis

Implementation problems involve the realization of a dynamic system which corresponds to
some set of system specifications. In general this involves finding a dynamic system which
corresponds to a given input-output process. For example, it may be necessary to design a system
which automatically tracks a specific input signal with a minimal amount of error. Autopilots and

guidance computers are designed based on a set of specifications for the desired performance of a

tactical guided missile.

A problem related to implementation is the identification problem, which involves identifying
the structure of an unknown dynamic system, or the value of the parameters of a system whose
structure is known, based on a comparison of the system’s inputs and outputs. The dynamic model of
the missile or other airframe used to design an autopilot or guidance system must be identified based

on wind tunnel tests or comparisons with other airframes whose characteristics are known.

Network problems involve the construction or composition of a network of dynamic systems
to accomplish some specific task, or with the decomposition or restructuring of a given dynamic
system into a network of smaller systems. The development of the complex mathematical model for
the six-degree-of-freedom motior} of a missile airframe and the design of a control system to stabilize
and control that motion is an example of a network design problem. The resulting control system

consists of a network of interconnected and interacting control components and sensors.
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Simulation problems involve the development of alternate models of a given system. As an
example, the development of a simulation of a dynamic system may involve the development of a
digital computer algorithm which solves the input, state transition, and output relations for a physical
system and produces a numerical estimate of the physical system’s performance. The development of
mathematical models and simulations is an important application of modern control theory to tactical

guided weapon design.

The goal in a simplification problem is to find a less complicated model for a specified
dynamic system which produces the same results as the original model, or produces results which are
in some way good enough to permit use of the simpler model for design or analysis. One
simplification technique often used is the approximation of a high-order continuous-time linear
dynamic system by a second-order dynamic system whose complex-conjugate poles are identical to the
poles of the higher-order system closest to the origin of the complex plane. This allows rapid
estimation of the transient response of the more complex system, since results for second-order

systems are readily available.

In aerodynamic control system design it is common practice to begin the design of a closed-
loop control system by focusing on the airframe motion in the pitch plane and ignoring any airframe
motions along the yaw or roll axis. This considerably reduces the problem’s complexity by

eliminating temporarily a number of state variables.

Analysis problems deal with many other aspects of dynamic systems, including their stability,
controllability, and observability. A dynamic system is considered to be completely state-controllable
if there is some input function which, if applied at some time t, drives the dynamic system state to the
origin at some later time t. A dynamic system is considered to be completely state-observable if the
input and output data measured over some time span from t to t’ allow one to uniquely determine the

initial state of the system at time t.

4.3 Modeling Dynamic Systems

To apply modern control theory to the guidance and control of tactical weapons, it is
necessary to apply the tools of mathematical system analysis and model building. The use of a
mathematical model is necessary if one is to investigate and understand the dynamic system’s
behavior. The mathematical model defines the nature of the dynamic system (linear, nonlinear, time-
varying, time-invariant, etc.) and allows the system to be treated and manipulated by mathematical

means. Models are required to construct simulations, to develop control algorithms and to investigate

and compare overall system performance,
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To develop a mathematical model of a dynamic system, the physical variables present in the
system must be related by mathematical structures such as differential or difference equations.
Concepts for model building are drawn from all areas of science and technology which impact the
performance of a tactical weapon. For example, the following element equations define the small-

signal performance of the three basic electronic circuit elements:

Element Defining Equation
Resistor v() = Rei(®)
Capacitor i,(t) = C-dv,(t)/dt
Inductor vi(t) = L -di(t)/dt.

In these defining element equations v,, v,, and v, denote the instantaneous voltage across any
resistor, capacitor, and inductor and i, i., and i, denote the instantaneous current through these circuit
elements. Any electronic circuit, regardless of its complexity, containing these three basic elements
can be reduced to a mathematical model, a set of simultaneous differential equations, by applying
these element equations and the basic laws of circuit theory. Once the model has been developed, the

response of the circuit to any input signal can be determined by analysis or simulation.

The mathematical model of an electronic circuit described thus far is a linear, constant-
coefficient, time-invariant dynamic system model. The steady-state performance of the dynamic
system represented by this model, at such time in the future when all derivatives are zero, indicating
that no further changes are occurring in the state of the system represented by the set of element

voltages and currents, is a static model represented by a set of linear algebraic equations.

A judicious choice of simplifying assumptions is always required when developing a
mathematical model of any dynamic system. When the model is to be treated analytically, these
assumptions are required to limit the complexity of the model. This implies a tradeoff, or

compromise, between model complexity and accuracy.

Mathematical models for dynamic systems can be classified in a number of ways. A first
distinction is between lumped-parameter and distributed-parameter models. In a lumped-parameter
model, the physical parameters of the model such as mass, resistance, or capacitance are assumed to
be spatially concentrated. This assumption leads to mathematical models consisting of sets of coupled
differential or difference equations. In distributed-parameter models, the spatial nature of the problem
is explicitly taken into account and this process leads to mathematical systems of partial differential
equations of parabolic, elliptic, or hyperbolic type. When dealing with dynamic systems originally

described by partial differential equations, two approximations which are frequently made are a
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discretization in space, resulting in a lumped-parameter model described by a set of coupled
differential equations, or discretization in time, leading to a set of coupled difference equations. In
the first case, the mathematical model remains a continuous-time model. In the second case, the

model is called a discrete-time model.

Models for dynamic systems can also be classified as deterministic or stochastic models. In a
stochastic model the relationships between the model’s parameters incorporate probabilistic effects due
to chance events or randomly occurring changes in the model’s structure. A deterministic model does
not account for such effects. Deterministic models can also be classified as parametric and
non-parametric models. Parametric models include such mathematical constructs as algebraic
equations, systems of differential or difference equations, and transfer functions. Parametric models
result from a theoretical analysis of the dynamic system’s underlying behavior. Non-parametric
models result from an experimental analysis of a physical system, and typically consist of tabulated

results and observations which serve as a description of the system’s behavior.

To develop a mathematical model of a dynamic system by means of a theoretical analysis, the
model developer must rely on an ability to decompose the problem into a set of manageable
subproblems. To each subproblem the developer applies basic laws of science such as the
conservation of energy, mass, and momentum. These basic laws are selected from an array of such
laws depending on the technology applicable. By applying these basic laws, a set of coupled
equations which provide a reasonable model of the underlying dynamic system is obtained. By
carefully selecting the variables describing the system’s performance a set of state transition equations
can be developed. In most cases of interest these will be in the form of a set of coupled first-order
differential or difference equations. These equations, together with any specific initial conditions, will

allow the analyst to solve for the performance of the dynamic system in response to any applied set of

inputs.
4.4 Summary

This chapter has introduced several important concepts associated with dynamic systems.
Dynamic systems, systems whose behavior evolves over time, are fundamental to the application of
modern control theory. Several classes of dynamic systems, including deterministic and stochastic
systems, have been described. The five major problem types associated with dynamic systems have
been highlighted, and mention was made of the way in which each problem type applies to the design

and development of tactical guided weapons.
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CHAPTER 5
SYSTEM IDENTIFICATION

5.1 The Basic Identification Problem

The problem of system identification involves building a mathematical model of a dynamic

~system based on input and output measurements. The general idea is to observe the behavior of the

dynamic system over a time interval and, by recording observations of the system’s input and output,

develop a description of the dynamic system’s behavior in the form of a mathematical model.

The mathematical model which results from the process of system identification is then used
for other purposes such as predicting the future output of the system or investigating means for
controlling the system’s operation. The application of both classical and modern control theory
assumes that a mathematical model of the underlying dynamic system is available. The applicability

of theoretical results thus depends on the development and availability of a satisfactory mathematical

model.

In practice there are two main approaches toward the development of a mathematical model
for a dynamic system. The first approach, the process of system analysis, divides the dynamic system
into conceptually smaller subsystems whose properties are well understood from previous experience,
physical laws, and well-established relationships. The mathematical models for these subsystems are
then assembled to form a composite model of the overall dynamic system. This analytical approach
to mathematical modeling does not involve any direct experimentation on the dynamic system. The
system analysis approach is the only one possible when a mathematical model is required for a new or

physically nonexistent dynamic system such as a proposed tactical weapon.

The second approach to the development of a mathematical model for an existing dynamic
system is to conduct experiments in which the dynamic system being investigated is treated as a black
box having unknown contents. The structure of the dynamic system is initially assumed to be
unknown. Input signals are applied to the dynamic system and these signals, and the output response
they induce over time, are recorded. Analysis of these recorded data allows the experimenter to infer
the structure of a mathematical model for the dynamic system. This experimental process of
developing a mathematical model for a dynamic system is called system identification. During the

process of system identification the complementary approaches of modeling and experimentation are
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used simultaneously to maximize the information gleaned from identification experiments and to

verify the results of experimental data analysis.
The general steps in the system identification procedure are:

¢ apply a specific set of test inputs to the unknown dynamic system

¢ collect the corresponding input and output data

® select a set of candidate mathematical models

¢ pick one member of the candidate model set as the best mathematical model to
represent the unknown dynamic system

The operational nature of the experimental system identification procedure is illustrated in
Figure 5-1.

In each of these steps, the investigator must be guided by intuition, experience, and the
available test data. The data are normally recorded during a specially-designed identification
experiment by sampling in discrete time using a digital computer. Some system identification
methods require a deterministic test input to be supplied, while others utilize random or pseudo-
random input sequences. The overall objective is to extract the maximum information about the
structure of the unknown system from the data that have been recorded. The choice of inputs,
sampling rates, noise filters, and signals to be measured are all important. For example, the sampling
rate must be at least twice as high as the maximum frequency which the system is likely to encounter

in practice.

The set of candidate models is selected by the experimenter based on experience in dealing
with dynamic systems similar to the unknown system. The system identification process requires the
experimenter to select the best member of the candidate model set. Engineering insight, intuition,
and a prior knowledge must be combined with a formal modeling approach if good results are to be
obtained. If the system identification process is to be implemented manually, the model selected may
be graphical, formed by a set of curves relating the system input and output. For automated system

identification an analytical model, formed by an assumed mathematical relationship between the test

input and test output, is preferred.

Semi-graphical time-domain models are used in classical methods of system identification.
These identification methods, which have been developed primarily for classical single-input, single-
output, time-invariant dynamic systems, are implemented by applying a unit step or an approximate

impulse function (formed by a high amplitude, short duration, rectangular pulse) and recording the
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system output. Data concerning the impulse or step response of the unknown system are then

experimentally obtained.
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Figure 5-1. System identification procedure.

Information about the gain of the system transfer function and the dominant pole locations is
then derived by analysis of the recorded data. The observed step or impulse response can often be
approximated by the response of a low-order model, and the Laplace transform of the impulse
response for this simpler model yields the unknown system transfer function. The impulse response
of a linear time-invariant system can also be obtained via the cross-correlation between the output and

the input when the input is white noise.

Figure 5-2 shows the transient response of a second-order linear time-invariant system

subjected to a unit step input. The parameter which distinguishes each curve is the damping factor £,
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Unit Step Response

and the horizontal axis is scaled to w,*t, where w, is the natural frequency of the system and t is the

elapsed time in seconds. This dynamic system is represented by the transfer function:

2
G(s) = “a

-
s? + 2w s + o)

2.000
1.800F £=0.1
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Figure 5-2. Transient response of a second-order system.

The unit step response of a general control system is illustrated in Figure 5-3. Several time
domain specifications are Iabeled in this figure, including the peak time, the maximum overshoot, the
steady-state error, the rise time, and the settling time. These quantities can be determined for an
arbitrary single-input, single-output stable control system, or dynamic system by analyzing the

system’s step response.
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Figure 5-3. Step response of a control system.

The percent overshoot and peak time are plotted in Figure 54 versus the damping ratio ¢ for a
second-order system having the transfer function G(s) defined above. Experimental measurement of
the percent overshoot allows the damping ratio to be evaluated using this figure. Measurement of the
peak time then permits the natural frequency to be evaluated. When the damping factor and the
natural frequency have been evaluated, a mathematical model having the form of G(s) can be
constructed.

The curves presented in Figures 5-2 and 5-4 are exact only for a second-order system defined
by the transfer function G(s). However, these figures also provide a good source of data for linear
systems of higher order, because many higher-order systems possess a pair of dominant poles, i.e., a
pair of poles much closer to the origin in the complex plane than any other poles of the system
transfer function. For these higher-order systems, the step response can be estimated by means of the
previous figures, and, conversely, a second-order approximate model can be identified based on

experimental measurements of the unknown system’s step response.

Frequency response experimental techniques can also be effectively combined with classical
graphical design methods. The frequency response of a linear time-invariant system can be
experimentally determined by applying a sine wave input of known amplitude, frequency and phase
angle, waiting for the transient response to disappear, and recording the amplitude and relative phase
shift of the output. This experiment is repeated for a number of different frequencies over the

frequency range of interest, and the results presented in a Bode plot. Standard techniques from
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classical control theory can then be used to approximate the experimental Bode plot by a transfer

function representation.
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Figure 5-4. Percent overshoot and peak time versus damping ratio for
a second-order dynamic system.

5.2 Identification Methods in Modemn Control Theory

Modern control theory relies on analytical modeling methods for system identification. These i
techniques primarily involve time-domain measurements of the dynamic system’s response and the

automated use of mathematical model-fitting or optimization techniques.

System identification deals with the problem of developing mathematical models of dynamic
systems using measured input and output data. In the time domain it is possible to continuously
adjust the parameters of a selected system model so as to best fit the applied inputs and observed
outputs. To apply this technique, a set of candidate models is selected and a criterion of fit between
the model set and the observed data are chosen. That particular model which best describes the
observed data according to the criterion of fit is selected to represent the unknown dynamic system.
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Time-domain methods of system identification allow for a large number of different methods,
model sets, and algorithms for computing goodness of fit. The system models are structured as
predictors of the unknown dynamic system’s output, and the identification criteria is based on a

sequence of prediction errors.

Dynamic models used for system identification in the time domain may be in the form of
linear difference equations, auto-regressive, moving-average, exogenous variable (ARMAX) time
series processes, output error models, or multidimensional state variable models. In each case, a term
is added to account for random noise sources and disturbances that affect the system and model
inaccuracies. The noise sequences are usually assumed to be independent at different time instants

and to have specified covariance matrices.

Criterion for determining the best model include the least-squares method, the maximum
likelihood method, or other methods which depend on the model set and the goodness of fit criterion

selected.

The basic concept for implementing these methods is to let each of the candidate mathematical
models predict the next output y(t) based on the information available for all preceding time
increments. The one candidate model which produces the best (minimal) sequence of errors between
predictions and actual recorded outputs is selected as the best representation of the unknown dynamic
system. The application of analytical modeling methods thus involves an optimization process
conducted over the set of candidate mathematical models and the recorded sequence of input and

output data.

The quality with which a particular mathematical model fits the observed data is crucial to the
success of the system identification process. Given an observed data set and a specified mathematical
model set, the best model is implicitly defined as the result of a numerical optimization process.
Efficient, accurate numerical optimization algorithms are required to successfully implement this

process.

If the mathematical model which results from the system identification process is required to
operate on-line for purposes of adaptive control, self-tuning, or monitoring, computation time and
memory requirements may restrict the way in which the predictions are computed and the model
results evaluated. Recursive system identification methods are used in such cases. Applications
which do not require on-line system identification may use other methods such as the maximum

likelihood method.
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Figure 5-5 shows a single-input, single-output, discrete-time, linear, time-invariant system.
The system is defined by a transfer function T(z) whose parameters ¢ are assumed to be unknown.
The dynamic system may consist of a continuous-time linear time-invariant system connected to a
discrete-time input sequence u(k) by a digital-to-analog converter (DAC). The output of the
continuous system is sampled by an analog-to-digital converter (ADC) and made available as a
discrete-time output sequence y(k). The measured output sequence z(k) is assumed to be a noise-

corrupted version of y(k):

z(k) =yk +w(k

vk)
u(k) Dynamic System y(k) (k)
LN o N LN
Parameters 6

Figure 5-5. Single-input, single-output discrete linear time-invariant system.

where w(k) is a noise sequence which is usually, but not always, a white Gaussian noise process.
The dynamic system is assumed, for the purposes of system identification, to be modeled by an auto-

regressive, moving-average (ARMA) process represented by the following difference equation:

o=2m

y&) = ; f,,&-0) + ¥ 6,.y&-) .

nwl

The system parameters 6, are assumed to be unknown constants. The purpose of the system
identification procedure is to generate numerical estimates of the values of the 2m parameters §,, 6,,
... B given a record of the input sequence u(k), the output sequence z(k), and some knowledge of

the noise sequence w(k).

The measured output z(k) can be written as:

z(k) =6uk) + Guk-1) + ... + 6_uk-m)
Gm.xy (k-l) + om.z)'(k—z) een ¥ ozmy (k_m) + W(k)

or in matrix form as:
z(®) =gT kP + wk

where o) = [u@®, uk-1), ..., v@&-m), y&-1), y &=-2), ..., y k-m)]'

GACIAC SOAR-95-01
Page 5-8



and § =6, 6,, ..., 6,,]"
The vector g(k) contains all measured data available at time k.
The output equation for z(k) can be used to eliminate y(k) from the equation for z(k):
y® = & - wk)
z(k) =6uk) + 6 uk-1) +... + 6 _uk-m)
+ 0, ZE-DWE-D) + 0,,(k-2) - wk-2)
+ oo + 0, (zG-m)wk-m)) + w) .
Collecting terms, the matrix equation results:
z(k) =hTK)6 + v(K),
where
b@® = [u®, uE-1), ... uk-m), zk-1), z-2), ..., z-m)]'
6 = [ 611 --v» O]’
and the noise process v(k) is:
vk =wk) - 0,,wk-1) - 0,,WwEk-2) - ... - 0, w(k-m) .

The discrete-time noise process v(k) is the result of passing the noise process w(k) through a
linear system whose properties depend on the unknown parameters, and as a result, v(k) is generally

non-white in nature.
The matrix equation:

zk =hTK 6 + v

applies at time k, and similar equations can be written for times (k—1), (k—2), ..., (k—L), where L

is the number of input/output data pairs to be used in the system identification process:
zk) =hTH+v(
z(k-1) = h"(k-1) 6 + v(k-1)
z(k-2) =hT(k-2) 0 + v(k-2)
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z(k-L) = hT(k-L) 6 + v(k-L).
These scalar equations can be placed in matrix form to provide an overall measurement

equation:

Zk =HE 0 + V),

where

Z® = [z®, 2&-1), 2(k-2), ..., z&-L)]'
is a column vector of noise and H(k) is an L by 2m matrix containing the prior L input/output data

sets.

5.3 Recursive Methods of System Identification

Application of modern control theory to tactical weapon systems often requires a model of the
underlying dynamic system to be available on-line, operating in real time in parallel with the actual
dynamic system. The model may be needed for on-line decision purposes, for example: the choice
of a suitable input signal dﬁring adaptive control, or the tuning of a filter by means of adaptive signal

processing, monitoring, or fault detection. These on-line problems are amenable to solution by means

of recursive system identification.

Recursive system identification means that the measured input and output data are processed
sequentially in time as they occur and become available. Recursive system identification is also called
real-time or on-line identification or sequential parameter estimation. This type of process is also

referred to as an adaptive algorithm. The input and output pair at time k is denoted by:

2 = 0@, y®),
and the parameter estimate at time k is denoted by §'(k).

When performed off-line, an estimate of the parameter vector §'(K) can be computed based on
the complete collection of input and output data, as in the maximum likelihood method. Such batch
processing methods cannot be used on-line, since the evaluation of §'(t) may involve a large number
of computations which may not terminate before the next sampling time. A recursive identification

algorithm is thus required which has the following form:
x(®) = F[k, xk-1), z®) ,

o® = fx®),
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where x(k) is the information state, which contains all the data required to predict the next
information state based on the present state and the effective input z(k). The functions F(.) and f(.)
are expressions that can be evaluated with a known number of operations, and these operations can be
completed before the next sampling time. By doing so, the system parameters §'(k) can be evaluated

during one sample time.

Recursive algorithms have been developed by many workers, each pursuing a different
approach. Tsypkin®! has applied a stochastic approximation method, based on the Robbins-Monroe
algorithm®2,

The system identification problem can also be cast as a nonlinear state estimation or filtering
problem by applying a Bayesian approach. The extended Kalman filter, as demonstrated by Ljung*?

is an example of this technique.

A third approach is the use of an adaptive observer, for example as in Luders and Narendra>*,
and finally Ljung and Soderstrom>® have presented a fourth approach which develops recursive

algorithms based on existing off-line identification methods.

5.4 Least-Squares Methods

The least-squares method of system identification is the most commonly used time-domain
method. The method is based on Gauss’s well-known method of minimizing the sum of a sequence
of squared terms. The least-squares method is also a standard mathematical tool for developing and

computing statistical linear regression models.
The simplest model of a linear discrete-time system is the linear difference equation:
Y& +a,yk-1) +... +a,yk-n) =
b,ukk-1) + ... + byu(k-m) + v(k)

where

y(k) = output at time k
u(k) = input at time k

v(k) = errors and disturbances at time k.
The sources of v(k) are measurement errors, process disturbances and modeling errors. Let

0 =(a, .., a, b, ..., b)T and

n?

f) = (-y k-1, -y&-2), ..., -y k-n),
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uk-1), uk-2), ..., u(k-m))".

The system can then be described in matrix form by:

y® =6"f® + v .
The least-squares identification problem involves finding suitable values for the lags n and m
and the parameters 6 based on observations of y(k) and u(k) for k = 1, 2, ..., N. The disturbance

term v(k) is assumed to not be available.

The disturbance term v(k) is called the equation error and represents the numerical remnant
that is not explained by the model! structure. Given values for y(k) and f(k), this error can be

determined as:

e =y® -6 f(K) .

Applying Gauss’s method, one minimizes the sum of the squares of these errors:

k=N
min, V, (6) = [qu‘] Y b®-mf®) .
k=l
The minimum value of Vy yields the least-squares estimate of the parameter vector 6 and, in

turn, identifies the parameters of the dynamic system model.

Up to this point we have illustrated how to identify the system when the structure, given by
the lags n and m, of the dynamic system model has been specified. The choice of n and m is related
to the desired complexity of the model and the acceptable goodness of fit. For any set of recorded
data, a better fit will always be obtained by increasing n and m. One way to select n and m is to
allow them to increase until the residual errors produced by the model are sufficiently small, and

appear to be uncorrelated at different time instants.

5.b Least-Squares System ldentification

There are several variations to the least-squares identification method, including recursive least
squares, weighted least squares, and multivariable models. The basic least squares method for system

identification is summarized in Borrie>S,

The least squares system identification process provides a numerical estimate of the unknown
parameters 6 based on the input/output information available up to and including the present time k.
To develop the least squares procedure, a dynamic system model, defined by a discrete-time transfer

function T(z), is fed the same information, H(z), as the actual system. This process was illustrated in
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-

Figure 2-10. The assumed system model generates an output Z'(k). This output is compared with
the actual system output Z(k) and the error, E(k), is calculated:

E®=2ZK -Z'Kk

Z'(k) = HK) .
Z'(k) is the output of the model based on the estimated numerical values of the system

parameters at time k, and Z(k) is the actual measured system output at time k.

The error E(k) is then used as a feedback signal to drive a mathematical procedure which
selects new parameter estimates, 6'(k), so that a performance measure J(6'(k)) is minimized. The
performance measure used is the weighted sum of the squared errors over the L most recent

input/output data pairs:

J1e'®) = QWK EK) .

In this performance measure, W(k) is a positive definite weighting matrix, usually diagonal in

form:
wk) 0 .. 0 ]
0 w® ... 0
w(k) =
0
0 0 ..wE

By substituting the matrix equations for E(k) and Z'(k) into the performance measure, taking a
derivative with respect to the parameter vector, and setting the result to zero, the weighted least-

squares numerical estimate of the unknown parameters is obtained:

0 =[HTOWREK] HOwOZE) .
This is the best estimate of the unknown parameters 6 based on the collection of input/output

pairs available at timesk, k — 1,k -2, ...,k - L.

When the (L+1) by (L+1) weighting matrix W(k) is selected as the (L+ 1) identity matrix,
the ordinary least-squares estimate 6'(k) is obtained:

& = [H'OH® " [H®HE] .
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The elements of W(k) can also be selected to more heavily weight earlier or later
measurements h(k). According to Mendel, this approach is useful when the unknown dynamic system
possesses a transfer function whose parameters evolve slowly over time®’. One strategy for time-

weighting is to assign the elements of W(k) according to the rule:

W‘(k) - ak—Lw—i .

Earlier measurements will then be weighted more heavily when a > 1, and later

measurements will be weighted more heavily when a < 1.

As the amount of measured data (governed by the parameter L) is increased, the reliability of
the numerical estimate §’(k) generally improves. However, the computation of either the weighted or
ordinary least-squares estimate requires the multiplication of several potentially large matrices and the
inversion of an (L+1) by (L+1) matrix for each new estimate. Since these operations can be very
time consuming, least-squares parameter estimates are generally performed by a recursive

algorithm™®:

0/(k+1) = ¢'(K) + Pk+Dh(k+1)) w(k+1)[z(k+1) - hT(k+1)6'(®)]

where
0’'k+1) = a2mby 1 column vector of updated parameters,
6'k) = a2mby 1 column vector of prior parameter,
Pk+1) = an (L+1)by (L+1) matrix,
h(kk+1) = a2m by 1 column vector containing the information available at time
k+1),
w(k+1) = ascalar weighting factor applied to the information at time (k+1),
z(k+1) =  the measured output at time (k+1).

The matrix P(k+1) is recursively computed using:

P(k+1) = [h G+ 1) w G+ ) BTG+ D PO]”
This recursive procedure is initialized by accumulating (k+ 1) input/output data sets and

computing an initial matrix P(k) as:

PR =HTOWOHHK],
where H(k) and W(k) are as previously defined. Alternatively, the process may be simply
started>® at time k = 0 with P(k) = K, an (L+1) by (L+1) diagonal matrix whose non-zero elements

are set to a large positive number.
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5.6 Least-Squares System ldentification Numerical Example

As an example of the least-squares procedure for system identification, consider a single-

input, single-output, time-invariant linear system. This system is illustrated in Figure 5-6.

— 8,

u(2) ™\ - w(2) y(2)
> -1 —> 0 —> ,
ulk) @7 S ° yik)

92 <

Figure 5-6. Single-input, single-output, time-invariant linear system.

The underlying dynamic system is assumed to have the following transfer function:

From this transfer function, the following difference eéuation can be derived:
y& = 6,uk) +6,uk-1) +0,yk-1).
Then,
z(k) =6, + 6,uk-1) +8,yk~1) + wk) ,
and applying the measurement equation,
z(k) = Gyuck) + 0, uk-1) + 0,z(k-1) + v(k)
where
vk =wk) - ,wk-1).

In matrix form this becomes:
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z(k) =hT®OK) + v(K) ,

where

h(K) = [u®, uk-1), z&-1)]

and

60 = [0y 6, 6] -

To obtain 2 numerical estimate of the parameters 6, and thereby identify the structure of the

dynamic system, an experiment was conducted. The input sequence:

wk =1{-1,1,2,20 -1,0,2,2, ..}

was applied to the unknown system and the output sequence:

z (k) = {0, -0.63, 0.40, 1.41, 1.79, 0.66, -0.39, -0.14, 1.21, ...}

was measured. In the assumed transfer function model, m = 1. A value of L = 2 was selected.

The time at which the evaluation was performed was k = 4. At that time:

z(4) =

"z (4) 1.79
z3| = |L41] ,
22| [0.40]

and
-h 1(4)-

h*(3)

17

The parameter values were computed using the normal least-squares procedure:

[u@4) u(3) z(3)]

= lu@3) u@) z(2)

[0 2 1.417

2 2 0.40

v @) u() z()]

2 2 -0.63]

6'&) = [H™ ®HOKO)] HT®Z®)],

This process resulted in the numerical values:

0'@4) = {0, -0.6337, 0.3667]" .
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To illustrate the recursive least-squares procedure, suppose that the time is (k+1) = 5 and
L = 2 is again selected. The recursive procedure begins with (L+1) = 3 input/output measurements

and, atk = 4,

- r
02 1a1] [100] [o2 ra
P@=|[22 040| [0 10| [220401|] ,
21 -063] [001] |21 -063]]

-~ T -1
~- - T [- - (
02 141 100 02 141
P@4)=1[2 2 040 010 2 2 0.401 s

21 -063] |001] [21 -0.63

6'@) = [0, -0.6337, 0.3667]" ,

hs) =), u@), z@]
=[-1, 0, 1.79]" .

Using w(5) = +1 as a weighting factor, the new parameter estimates are calculated from:
6'(5) = 6'4) + [0, +0.00045, +0.00135]"

= [0, -0.6333, 0.3681]" .

This process can be repeated indefinitely to improve the parameter estimates over time. This
example was computed using an actual system having the parameters § = [0, —0.632, 0.368]" and

without the presence of measurement noise. Figure 5-6 shows the structure of the identified system.

5.7 Maximum Likelihood Method

Maximum likelihood methods for dynamic system identification are of special importance
because they are generally applicable to a variety of model structures. The resulting estimates of
system parameters have good asymptotic properties, converging to final values in reasonable amounts
of computation time. The maximum likelihood principle was first applied to single-input single-
output auto-regressive moving-average exogenous variable (ARMAX) models by Astrom and

Bohlin*®,

System identification, parameter estimation, and statistical inference all deal with the problem

of extracting information from a set of noisy observations modeled by a set of random variables. The
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observations are contained in the random vector y = (y,, ¥», ..., ¥»)- The probability density

function of y is assumed to have the form:

f(yp Yoo eoer Yoo 0) = f(y’ 0) ’

which is equivalent to a probability distribution of y over a set A:

Prob (y € A) = f £, x) dx .

xcA

6 is a d-dimensional vector of parameters which describes the properties of the observed
variables y. These pafameters are assumed to be unknown. The basic identification technique is to
compute the vector § by means of the observation y. This is done by constructing an estimator
having the form 6'(y). If the observed value of y is y*, then the resulting estimate for the parameters

is 6'(y"). Many forms for the estimator function are possible.

In 1912 Fisher*™ introduced the particular estimator called the maximum likelihood estimator,
which maximizes the probability of the observed vector y. Fisher defined this estimator by
recognizing that if the joint probability density function is f(y, §), then the probability that the

particular observation y* should occur is proportional to f(y*, 6).

The quantity f(y*, 6)f is a deterministic function of the unknown parameters 6, once the
numerical value of the vector y* is specified. Fisher called this quantity the likelihood function, and it
represents the likelihood that the observation y* should indeed have occurred. A reasonable estimator
of 6 can then be obtained by selecting the unknown values of 6 so that the probability of the observed

event is as high as possible. This is the maximum likelihood estimator of the parameter vector 6:

0, ") = arg max,f(y, 0) .

When applied to the problem of dynamic system identification, the process of maximum
likelihood identification requires that the input and output sequences up to time k be recorded. The
system model is thought of as a predictor function which predicts the output of the system, y(k), at
time k based on the inputs and outputs up to time k — 1. A prediction error is defined as the
difference between the predicted and observed outputs. The prediction error is usually assumed to be

Gaussian with a zero mean and a time-dependent covariance matrix.

A likelihood function is next derived which depends on the time k, the unknown parameters

of the model, §, and the prediction errors up to time k, which in turn depend on the applied inputs,
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the assumed model structure, and the observed outputs. Maximizing this function yields a set of
values for the unknown model parameters 6, and the unknown system is thus identified.

In modern control theory, system identification is applied primarily to obtain discrete time,
linear, time-invariant models of dynamic systems. The discrete time nature of the problem arises
from the use of a digital computer equipped with ADC and DAC converters operating at a sample
time T to collect the input and output data. Figure 5-5 showed the basic setup of the system
identification problem for a single-input, single-output linear time-invariant system described by a set

of unknown parameters 6.

The system is subjected to an input sequence u(k) and produces an output sequence z(k) given
by:

z® =yk +v(E),
where v(k) is usually (but not necessarily) a white Gaussian noise process, and the system behavior is

described by an auto-regressive moving-average (ARMA) mathematical model:
y& =u®é, +uk-1n6, +... + uk-m)f_

+y&k-1)6,,; +yK-2)60,, + ... +yk-m)b,,

The 2m unknown system parameters (6,, 6,, ..., 0,,) are assumed to be constants. The
objective of the system identification procedure is to identify, determine, or estimate the numerical
values of these parameters given the observed input and output sequences u(k) and z(k) and perhaps

some knowledge of the properties of the noise sequence v(k).

The maximum likelihood method of system identification is based on a relatively simple
procedure from statistical analysis. Consider a sequence of independent, identically distributed
n-dimensional random vectors y(1), ..., y(N), where each y(i) is assumed to be modeled by a
multivariate Gaussian probability density function having a mean vector u and a covariance matrix o.

The likelihood function for this problem is:

k=N

L@, coor YO, 1 @) = - [%] In@m) - lalet@) - 3 (0 - W7o (@ - 4 -

k=l
Differentiating the likelihood function with respect to u and ¢ yields the following two

equations which must be solved for the maximum likelihood estimates u’ and ¢’ of the parameters p

and o
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k=N
-[3] @ [3] o -mbw - we o,

keN

Y @)ry®-p)=0.

k=l

Solving these two simultaneous equations for the estimates p and o yields:

®
i

1 k=N
- [5] T y® .

k=1

and

o

[1] :\'j‘ b® - )b - ) .

2] i

The equation for the vector u’ is simply the sample mean of the N vectors y(1), ..., y(N), and
the equation for the matrix ¢’ is the sample covariance computed about the sample mean. Thus, by
processing the accumulated data the initially unknown parameters p and ¢ are estimated to be u' and

o', and the statistical nature of the underlying process is identified.

When applied to the identification of linear, time-invariant dynamic systems, a mathematical
model is assumed for the structure of the unknown dynamic system, and the model and the unknown
system are supplied with the same sequence of input signals. The sequence of errors between the
model output and the observed system output is treated as a sequence of Gaussian random variables
having an unknown mean value and unknown variance. The observed sample mean and covariance
matrix is a function of the model parameters. Analytic expressions are derived for the mean and
covariance in terms of the model parameters, and the resulting nonlinear equations are solved

numerically to optimize the model parameters in terms of the sample mean and covariance.

As an example, consider a generalized predictor model for a dynamic system having a single

input u(k), an actual output y(k), and a predicted output Y(k) given by:

Y@ = £y k-1), uk-1), 6) + e,
where the sequence of prediction errors e(t) is assumed to be independent and identically distributed

according to a probability density function p.(e}6). The likelihood function for this process is:

L@, . yO, 6) = Inp, [y (0, ... y V), 6))

k=N

=i |J] 20 ® | Y &-1), uk-1), 0)

k=1
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k=N
=Y ln(P,(y(k) Y k-1), uk-1), o))

ksl

k=N

= ?.‘? ln(Pe(y(k) - £(Y k-1), u(k-1), 6) | 0)) .

The prediction error e(k) = y(k) — f(Y(k—1), u(k—1), 6) appears in the likelihood function.

If the prediction errors e(k) are assumed to have a Gaussian probability density function with

a mean of zero and a covariance matrix ¢, the likelihood function can be written as:

kN

Ly, ..., yN), 6) = 3 [- [‘_21] In(27) - [.;.] ln(det(a))]

k=1

k=l

- [-;-] 5 b - v &b, e, i) by @ - £ on, uae, ).

Differentiating this expression with respect to the unknown covariance matrix o yields a

solution for the maximum likelihood estimate, o':

7 - [;] 3 b - £y @1, waen, Ay @ - £y &1 wae-n), o] .

k=1

This equation for ¢’ is then used to eliminate ¢ from the likelihood function:

L@, ... YAN), o) = - [%] InQ27+1) - [%] In (det(c”)) .

For a single-input, single-output (scalar) dynamic system the likelihood function becomes:

k=N 2
L{y(D), ..., yON), o) = Constant - [g] In [[é] > @ - £ &1, w&-1), e))] .

Maximization of the likelihood function is then achieved by minimizing the logarithm of the
prediction error covariance. The numerical value of the parameter 6 is determined by a numerical
optimization process. Note that the function f(.) determines the relationship between the model input
u(k), model output Y(k), and parameter .

If a linear scalar model is assumed for the unknown system,
Y () = f(Y (k-1), u(k-1), 6) + e (k) becomes

Yk) =6, Yk-1) +0,Uk-1) +ek), k=12, ..., N.
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The values of the measurement error e(k) are assumed to be drawn from a normal distribution

having a mean value of zero and a variance of ¢%

A sequence of N input signals is then applied to the model and the unknown system and the
model and system outputs, Y(k) and y(k), are recorded along with the inputs u(k). The likelihood

function for this problem becomes:

k=N

Ly (), -, OV, 6) = Constant - [g] m’[ [fo-] Y bw -y -1, v, e))J

k=]

N 11 K
= Constant - [5] In? [’N] Y y® -6, Yk-1-6,uk-n)| .

The likelihood function will be maximized if the expression:

k=N
In? [ [%] Y (® - 6,Y &-1) - ezu(k-l))]

k=}

is minimized. In general, numerical optimization techniques similar to those discussed later in this

review must be used to solve for the best values of the unknown parameter values 6, and 6,.

Franklin and Powell>! discuss the numerical implementation of the maximum likelihood

method for system identification and present an algorithm suitable for off-line or on-line operation.

5.8 Maximum Likelihood Estimation of System Parameters

The maximum likelihood method is an off-line, batch-type computation process also applied to

the collection of input/output information available at time k:

Z(® = H'®6 + V()

where

Z® = [z®, z&-1), ..., zk-D)]

is an L by 1 column vector,

uk) uk-1) ... uk-m) zk-1) zk-2) ... z(k-m)

b7
H@ = |aig-p| = [2ED vE&D ouGolm) 2Ge2) 25) ...zl
pikD) uk-L) uk-1-1) ... .. oo w. z(k-L-m)

is an L by 2m matrix containing the prior L input/output data sets, and
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8 = [6p 6,5 oo 0,
is a 2m+1) by 1 column vector containing the unknown system parameters.

In the maximum likelihood method, the noise vector V(k) is assumed to represent a zero mean
Gaussian process. The (L+1) Gaussian joint probability density function for the measured output

Z(k) is given as>®:

-1/2 T
p®) = [enaR@) epl-amlzw - EOr©ROEZ® - Eoo®] .
where the (L+1) by (L+1) matrix R(k) is the expected value of the matrix product V(k)V'(k). R(k)

is called the covariance matrix of the discrete noise sequence.

The values of the estimated parameters 6'(k) are selected by the maximum likelihood method
so that p(Z(k)) is maximized for the available observations Z(k) and H(k). By maximizing p(Z(k)),
the observations Z(k) are considered to be as likely as possible. Maximization of p(Z(k)) is
equivalent to minimizing the likelihood function L(Z(k)),

where:

LZ®) =Z® - HOO®R'®[Z0O - HEI®) .
The maximum likelihood estimate of 6’(k) is obtained by taking a derivative of the likelihood

function, setting the result to zero and solving for the result:

#'® = [H'OR'QWHE] HTQR® ZK) .
To apply the maximum likelihood method, the noise characteristics of V(k), determined by the

covariance matrix R(k), must be known. The resulting estimate, 6’(k), is bias-free.

In most applications, no information regarding the statistical properties of V(k) is available.
However, the maximum likelihood method can be extended to identify the parameters of the noise
process as well as those of the unknown dynamic system. The approach below can also be applied to
the least-squares method, and is related to Johnson’s disturbance accommodating control method
described by Borrie®S.

As a technique for identifying the noise process as well as the dynamic system, Saridis™®

recommends that the measurement process be written as:
z(k) =auk +auk-1) +.. +auk-m

+bz(k-1) + b,z2(k-2) + ... + b_z(k-m)
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+cow(k) + c,w(k-1) + ... +c_ w(k-m) .
The noise process w(k) is assumed to be white, Gaussian, and to have a mean of zero and an
unknown variance.
A maximum likelihood estimate, z'(k), of the output z(k) is assumed, based on the available

evidence contained in the input/output information present at time k. The parameters a, b; and c; are

assumed to be estimated as a’;, b’; and ¢’;. An error equation is then written:
e®) =z - 2'(k)
jem ] jom . j=m .
ek) = z(k) - E aj’u(k_.]) - E bj' Z(k‘_]) - E cj’e(k-J) .
j=0 j=l j=0

The estimated parameter vector 6'(k), a (3m+2) by 1 column vector, is written as:

T
J - 7 / / / / / / ! /
& = [ao, ay, .., ag, by, by, ooy, by, ©g, €1y weey cm] .

M + m sets of input/output data are then accumulated, and a probability density function for

the error is set up. The logarithm of that density function serves as a likelihood function:

kem+M

L{#, & = Constant - [%] n(o?) - [El?f] Y e® .

k=m+]

In this expression, o® is the unknown variance of the error e(k). Maximizing L(§’, ¢ is
equivalent to minimizing:
k*m+M
J@Y= Y 2®.
keme+]
When the minimum is attained, the error variance o® becomes:

o? = H{.} 1@ .

5.9 A Steepest Descent Algorithm for Maximum Likelihood Parameter Estimation

Borrie®® suggests that J(') be minimized by means of a steepest descent numerical method.
Either the same block of input/output information can be used at each iteration of that algorithm, or a
new block of M input/output information can be assembled and used at each successive iteration. The
structure of this algorithm applied to maximum likelihood estimation of system parameters and the

identification of a discrete-time dynamic system is outlined below.
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Step 1. Assume sets of initial values for the unknown parameters and the error gradient:

T
/ / / / / / / / /
0 = [ao, ay, ...y 8y by, by, ..., by, ¢, Cf, oy cm] .

de (k=) [ae(k—j),

T
de (k-j) .
—_—~ ,J=0,1, ..., m.
T 3ai ] !

/
dc,

Step 2. Evaluate the errors e(k), k =m + 1, m + 2, ..., m + M using:
jem j=m j=m
e =z - ) a’'uk) -) b'zk-) -y ¢’ e k=) .
j=0 =l j=0
Step 3. Using the most recent parameter estimates 6’ or 6',,,, evaluate the following partial
derivatives fork =m + 1, m + 2, ..., (m+M):
9e® - ) -% of 2&D 50,1, . m

1 £ /
da; =0 a;

B® _ ;) - 3 o ek
= -z(k-j) - c; »jJ=2,2, .., m
ab/ § ' ab/

j=m -
20 - etk -3 of 2D j-0,1,.m
dc; §=0 dc;

Step 4. Evaluate the rate of change of the performance measure:

aJ M de (k)
9 - gelx) |
a0’ kg °® 30’

Step 5. Evaluate the scalar S, where:

3 _ " {[oe®] [de®]T”
S = =
a96? k§1 [ a¢ a6’

Step 6. Revise the estimate of the parameters according to:

o =¢ -s 97
- a0’

Step 7. Repeat the above procedure, beginning at Step 2, using the most recent parameter
estimates 6,,,, and partial derivatives de(k—j)/d9’, k = (m+M), j = 0, ..., m, in place of the Step 1
estimates. Terminate the algorithm when no further change in the parameter estimates is noted.
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The maximum likelihood algorithm presented above can be expected to converge successfully
if the initial parameter estimates are reasonably correct. A least-squares method might be used to

provide the necessary initial estimates.

5.10 Summary

. The problem of dynamic system identification, the development of a mathematical model for a
dynamic system based on measurement of the system’s input and output, has been discussed. Several

methods of system identification, including the methods of least squares and maximum likelihood,

were described in some detail.

System identification is closely related to the problem of state variable estimation and use of a
Kalman filter which is discussed in the next chapter of this report. While the identification process
attempts to estimate the parameters of a selected mathematical model for a potentially unknown
dynamic system, the process of state variable estimation attempts to produce an estimate of the state
variables present in a specific mathematical model. State variable estimation is necessary for
implementing feedback in certain closed-loop control systems. System identification will later be seen
to play a major role in the implementation of adaptive control systems, which may also employ state
variable feedback.

Eyhoff>!? has developed and outlined a variety of system identification methods based on the

least-squares method, the maximum likelihood method, and other techniques. Additional methods

proposed included the use of extended Kalman filter algorithms and the statistical analysis of input
and output data.

It should also be noted that a careful specification of the experimental input sequence is
required to achieve reliable estimates of system parameters. These parameters, and the order of the

unknown system, cannot be reliably identified using arbitrary input signals.
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